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Abstract. Privacy guarantees are still insufficient for outsourced data
processing in the cloud. While employing encryption is feasible for data
at rest or in transit, it is not for computation without remarkable per-
formance slowdown. Thus, handling data in plaintext during processing
is still required, which creates vulnerabilities that can be exploited by
malicious entities. Homomorphic encryption (HE) schemes are natural
candidates for computation in the cloud since they enable processing of
ciphertexts without any knowledge about the related plaintexts or the
decryption key. This work focuses on the challenge of developing an effi-
cient implementation of the BFV HE scheme on CUDA. This is done by
combining and adapting different approaches from the literature, namely
the double-CRT representation and the Discrete Galois Transform. More-
over, we propose and implement an improved formulation of the DGT
inspired by classical algorithms, which computes the transform up to
2.6 times faster than the state-of-the-art. By using these approaches, we
obtain up to 3.6 times faster homomorphic multiplication.

1 Introduction

With growing data collection by governments and companies, protecting its se-
crecy becomes as important as being capable of processing and extracting useful
information. However, how to efficiently collect and compute user data without
undermining their privacy is an open problem. System breaches may happen
even when data holders choose the most conservative practices and never share
data intentionally.

The Breach Level Index provides distressful statistics about data leakage.
According to their last report, 944 data breaches were reported in 2019, leading
to 4.5 billion data records compromised worldwide. Among these records, less
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than 30% were encrypted. That is, most of it, including emails, vehicle regis-
tration information, financial data, and medical records, were stored completely
unprotected [27].

Most of these breaches occurred by accidental loss or by leaving data exposed
inadvertently. Attacks from malicious parties are also far from being negligible.
In recent years, many data breaches were brought to light, such as: the US gov-
ernment surveillance program PRISM, that forced cloud companies to provide
user private data [21]; the Yahoo data breach, possibly the largest known, af-
fecting about 3 billion accounts, which revealed unencrypted email addresses,
telephone numbers, and security questions and answers [8]; and the Equifax
event, which exposed data of more than 140 million customers [24]. The last
incident resulted in nearly $1.4 billion dollars spent on legal costs.

Data can be protected by means of encryption and its mathematical guaran-
tees, even in the case of leakage. However, the existence of encryption-decryption
cycles during its lifespan can incur on vulnerabilities. Homomorphic Encryption
(HE) schemes enable data processing while protecting its confidentiality. They
allow the evaluation of arithmetic circuits over ciphertexts by a third party
without any knowledge of the corresponding plaintexts or the decryption key,
preventing the inputs and outcome of the computation to be learned. Hence,
HE is a natural candidate for solving privacy issues caused by malicious or care-
less third parties, or other security flaws during the processing that could leak
sensitive information, such as side-channel vulnerabilities.

Most of the HE schemes available in the literature rely on the hardness of the
Ring-Learning with Errors (RLWE) problem. The RLWE assumption offers a
strategy for protecting a message, encoded as a polynomial in Rq = Zq[x]/〈f(x)〉,
by adding noise in a way that it can only be removed when given a trapdoor.
There are several recent proposals following this approach in cryptosystems such
as BGV [9], BFV [18], and CKKS [11]. All of them depend on polynomial arith-
metic as building block, so its efficient and reliable implementation is critical for
the adoption of HE schemes in real-world scenarios.

CUDA is an important tool for the efficient implementation of polynomial
arithmetic. It’s a SIMD architecture developed and maintained by NVIDIA for
employing the data parallelism potential of a GPU in tasks beyond graphical
processing. However, the particularities of CUDA impose challenges for its cryp-
tographic use. Its processing flow demands careful planning to align possible
conditional branches with certain thread groups, and its memory paradigm con-
siders several structures with different dimensions and latency characteristics,
physically separated from the machine’s main memory. Moreover, no general-
purpose cryptographic library or polynomial arithmetic framework supports
CUDA. Hence, these constraints motivate the development of a complete toolkit
to work as a arithmetic engine aimed at RLWE-based cryptosystems.

Our contributions. This work presents mathematical tools and implementa-
tion techniques for the efficient implementation of the BFV scheme in CUDA.
We follow the literature by employing the Residue Number System (RNS) as
the best approach for handling the multi-precision arithmetic required by the
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cryptosystem, and the Halevi, Polyakov, and Shoup modification of BFV to
solve the division and rounding problem in the RNS domain [7, 22]. The main
contributions of this study are:

– A novel hierarchical formulation of the Discrete Galois Transform (DGT)
that offers about two times lower latency on GPUs than the best version
previously available in literature. Moreover, we present evidence that it is
also faster than the commonly used Number Theoretic Transform (NTT) due
to its lower memory bandwidth requirement. Such formulation is inspired on
Bailey’s version of the Fast Fourier Transform [5].

– Compatible choice of parameters between the DGT and the RNS represen-
tation. We show that the double-CRT representation proposed by Gentry et
al. is a better implementation design than the usual approach of working
with Mersenne or Solinas primes in different rings [9].

– A more efficient and polynomial-oriented state machine which reduces the
need for moving data in and out of the DGT domain and between the main
memory and the GPU global memory.

These contributions are not limited to the BFV cryptosystem and can be
easily applied to other RLWE-based schemes. Moreover, we provide latency
benchmarks from a proof-of-concept implementation named spog, which was
built based on the aforementioned methods. By implementing a library we
could evaluate our techniques and point out their advantages and weaknesses
when compared to other solutions presented in the literature. Two important
works also employing the DGT were considered for comparison with our results:
Badawi, Polyakov, Aung, Veeravalli, and Rohloff [2]; and Badawi, Veeravalli,
Mun, and Aung [4]. When considering homomorphic multiplication as the main
performance-critical operation, spog offers higher performance against these
works, surpassing a 3.6-factor performance improvement against the latter.

2 Mathematical background

The efficient implementation of an RLWE-based cryptosystem on CUDA re-
quires carefully designed building blocks for adjusting the operations to the
limitations of the architecture. The BFV cryptosystem and other HE propos-
als rely on quite large parameters for achieving proper security levels, which
impose a challenge to the hardware limitations of GPGPUs for both the size
of the coefficients, much larger than the native integer instruction set; and the
polynomial arithmetic, that requires highly-optimized algorithms to reduce the
computational complexity and improve the scalability of expensive operations,
such as polynomial multiplication.

This section defines the Fan and Vercauteren cryptosystem; presents the
Residue Number System (RNS) representation, used to avoid the multi-precision
arithmetic; presents state-of-the-art proposals for handling the limitations of the
RNS; and introduces the Discrete Galois Transform (DGT), a variant of the Fast
Fourier transform (FFT) more suitable to GPU implementation.
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2.1 The BFV cryptosystem

In 2012, Fan and Vercauteren proposed a variant of Brakerski’s homomorphic
cryptosystem, nowadays referred as BFV [18]. While the original scheme was
built using Learning With Errors (LWE) as the underlying problem, BFV em-
braced the Ring-Learning With Errors (RLWE). Classified as a leveled homomor-
phic encryption scheme (LHE), it’s currently one of the most efficient cryptosys-
tem of its class with respect to speed and memory consumption, and remains
untouched by recent advances in cryptanalysis [1, 13].

Let p > 1 be an integer. BFV’s basic arithmetic is built upon polynomial rings
of the form Rp = Zp[X]/〈Xn +1〉, where Zp[X] is the set of integers [0, p), and n
a power-of-2 integer. The scheme defines the following parameters set: a security
parameter λ; a decomposition base ω > 1; the modulus t ≥ 2 that determines
the plaintext domain Rt; and the modulus q >> t that determines the ciphertext
domain Rq. Moreover, it makes use of an error distribution χerr, usually a zero-
mean discrete Gaussian distribution parameterized by the standard deviation
σ.

The main procedures of BFV are the following:

KeyGen(λ): Sample s ← R2, a ← Rq uniformly at random, and e ← χerr,
and compute b = [−(a · s+ e)]q. Sample ai ← Rq uniformly at random,

ei ← χerr, and compute γi =
(
[−(ai · s+ ei) + ωi · s2]q,ai

)
, for i ∈ Zlogω q.

Output the key set (pk, sk, evk) = ((b, a), s, γ), for γ =
⋃
γi.

Encrypt(m, pk): for a plaintext message m ∈ Rt and a public key pk = (b, a),
sample u ← R2 uniformly at random and e1, e2 ← χerr, and compute the

ciphertext c =
(

[∆m+ b · u+ e1]q , [a · u+ e2]q

)
, where ∆ = bq/tc.

Decrypt(c, sk): for a ciphertext c = (c0, c1) and the secret key sk = s, recover

the plaintext m =
[⌊

t
q [c0 + c1 · s]q

⌉]
t
.

Add(c0, c1) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute
cadd = ([c0,0 + c1,0]q , [c0,1 + c1,1]q).

Relin((c0, c1, c2), evk) : for c0, c1, c2 ∈ Rq and the key evk = (b,a), output([
c0 +

∑logω q
i=0 bi ·

[
c2
ωi

]
ω

]
q
,
[
c1 +

∑logω q
i=0 ai ·

[
c2
ωi

]
ω

]
q

)
, for i ∈ Zlogω q.

Mul(c0, c1, evk) : for ciphertexts c0 = (c0,0, c0,1) and c1 = (c1,0, c1,1), compute

c =

([⌊
t
q · c0,0 · c1,0

⌉]
q
,
[⌊

t
q · (c0,0 · c1,1 + c0,1 · c1,0)

⌉]
q
,
[⌊

t
q · c0,1 · c1,1

⌉]
q

)
and return cmul = Relin(c, evk).

2.2 Residue Number System

As can be observed in Section 2.1, BFV depends upon computationally expensive
operations. Moreover, the literature reveals that big integer arithmetic is required
to offer proper security levels [26]. A common strategy in implementations of
BFV is to use the Chinese Remainder Theorem (CRT) on the Residue Number
System (RNS) to map large integers to a set of smaller residues capable of being
evaluated by processor native instructions [16, 7].



Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 5

Definition 1 provides the formulation for the forward and inverse CRT.

Definition 1 (CRT). Let x be a polynomial in Rq, and {p0, p1, . . . , p`−1} a
set of pairwise co-primes. The CRT decomposition is defined as CRT (x) ={

[x]p0 , [x]p1 , . . . , [x]p`−1

}
= X, and results in a set X with ` residues. Let M =∏`−1

i=0 pi. The inverse CRT is defined as:

ICRT (X) =

`−1∑
i=0

(
M

pi

)
·

[(
M

pi

)−1

Xi

]
pi


M

= x.

Addition and multiplication in the RNS domain work by applying the operation
residue-wise. Division and modular reduction, however, are more complicated
and require a more advanced technique involving representation on different
bases, as described in Section 2.5.

To guarantee the correctness of these functions, the product of all primes
M must be bigger than the biggest possible coefficient of a polynomial to be
represented.

2.3 Discrete Galois Transform

The Fast Fourier Transform (FFT) is a long-time known method that offers linear
computational cost for polynomial multiplication when the operands lie in its
domain, and quasi-linear when we consider the computation of the transform
itself. However, the FFT is defined in C, which makes it harder for its direct
applicability in the context of RLWE-based cryptosystems, that are defined in
integer domains. Thus, variations offering the same functionality but built upon
integer arithmetic were proposed in the literature, such as the Number Theoretic
Transform (NTT) over GF (p), for some convenient choice of a prime number p.

In the same way, the Discrete Galois Transform (DGT) is another variant
built over GF (p2) [14]. The main advantage of DGT over NTT is caused by the
different working domain, which results in memory bandwidth savings, as deeply
discussed in Sections 3 and 4. However, despite this, they are sufficiently similar
so that they share computation data-paths, as Cooley-Tukey or Gentleman-
Sande, and their efficient implementation strategies. Furthermore, as GF (p2)
can be represented in the set of Gaussian integers Zp[i] = {a+ ib | a, b ∈ Zp}, it
uses finite field arithmetic with Zp elements as building blocks, which cooperates
with the representation used by RNS and BFV. In Definition 2 we introduce the
base formulation, as done by Badawi et al. [3].

Definition 2 (Discrete Galois Transform). Let p ≥ 3 be a prime number,
x = {x0, . . . , xn−1} be a vector of length n such that xi ∈ GF (p2) for 0 ≤ k < n,
and g be an n-th primitive root of unity in GF (p). Then, the DGT and its inverse
are defined as in Equations 1 and 2, respectively.

Xk =

n−1∑
j=0

xjg
−jk ∈ GF (p2), (1)
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and

xk = n−1
n−1∑
j=0

Xjg
jk ∈ GF (p2). (2)

Badawi et al. have shown that all primes greater than 2 can be used along
with the DGT, but in Section 2.4 we show that this selection must be done
carefully so that one can generate the precomputed roots the transform requires.

The value of n−1 in Equation 2 is taken as the multiplicative inverse of n
modulo p. The operations in GF (p2) are performed using arithmetic in the set
of Gaussian integers, similarly to C, but taking the real and imaginary parts as
integers modulo p.

Gaussian integers The set of Gaussian integers can be used to represent el-
ements of GF (p2), that is Zp[i] = {a+ ib | a, b ∈ Zp}, for i =

√
−1. Arithmetic

in Zp[i] is similar to complex number arithmetic with a reduction modulo p for
the real and imaginary parts.

Arithmetic Let a, b ∈ GF (p2). The main operations can be defined as follows:

add(a, b) = (are + bre) + i(aim + bim) mod p

sub(a, b) = (are − bre) + i(aim − bim) mod p

mul(a, b) = (arebre − aimbim) + i(arebim + aimbre) mod p

div(a, b) =
(
a · b

)
·
(
b2re + b2im

)−1
mod p

rem(a, b) = a− (a/b) · b mod p

We suggest Wuthrich’s lecture notes on Gaussian integers as a valuable read-
ing material to understand the connection of this ring to the DGT [28], of which
some results are summarized in the Appendix A.

2.4 Generating k-th primitive roots of i modulo p

The use of the DGT for polynomial multiplication in a polynomial ring modulo
xn+1 requires the computation of a k-th root of i modulo a prime p, discussed in
Section 3.1. This element is used for achieving a cyclotomic polynomial reduction
for free when n is a power of two. When p is a Mersenne prime, the literature
presents efficient analytic methods; for other choices of p, the best option still is
a trial-and-error approach.

Badawi et al. state that a naive implementation of such approach takes 156
hours to find a 214-th primitive root of i for p = 264 − 232 + 1 in a highly
optimized Mathematica script [3]. Because of that, they propose a more efficient
strategy, when p ≡ 1 mod 4, by factoring p in two Gaussian primes, namely
f0 and f1. This decomposition of p is quite simple and relies on Lemma 3 and
Proposition 1.

Algorithm 1 starts from the Fermat’s little theorem, which states that if p
is a prime then np−1 ≡ 1 mod p for all n ∈ Zp. Hence, the square root of that
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Algorithm 1: decompose in gaussian primes: Returns elements f0
and f1 such that f0 · f1 = p.

Input: A prime p
Output: Gaussian integers f0 and f1 such that f0 · f1 = p

1 do
2 n = sample(Zp)

3 while n(p−1)/2 6≡ −1 mod p

4 k = n(p−1)/4 mod p
5 u = gcd(p, k + i)
6 return (f0, f1) = (u, u)

must be equivalent to either 1 or −1. In the latter case, we can find a number
k2 such that k ≡ n(p−1)/4 ≡ i mod p. In other words, if k2 ≡ −1 mod p then
k2 + 1 ≡ 0 mod p and p divides k2 + 1. Since k2 + 1 factors in (k + i) · (k − i),
we found a factorization of p.

At this point, there is no guarantee that k + i is a Gaussian prime. By
Lemma 2, we find that the greatest common divisor of p and k + i is either
k + i or that there exist some u such that u | p and u | k + i. Thus, since
u = gcd(p, k + i) results in a Gaussian prime, we take it as the first factor of p.
From Lemma 3, u is the second factor.

Lemma 1 (Wuthrich’s Lemma 5.4). If π ∈ Z[i] is such that N(π) is a prime
number, then π is a Gaussian prime.

Lemma 2. Let p be an odd prime such that p ≡ 1 mod 4 and k ∈ Zp. The
greatest common divisor of p and k+ i is k+ i or a Gaussian prime u such that
u | p and u | k + i.

Proof. By the Fermat’s theorem on sums of two squares, we have that an odd
prime p can be expressed as p = x2 + y2, with x, y ∈ Z, if, and only if, p ≡ 1
mod 4. Since x2 + y2 = (x + iy)(x − iy) and N(x + iy) = N(x − iy) = p, then
x + iy and x − iy are Gaussian primes and p = (x + iy)(x − iy) is the unique
factorization of p in Z[i], not considering the order of the factors3.

On the other hand, we have that (k + i)(k − i) ≡ p mod p, by construction.
Combining the two facts, we obtain that p = (x + iy)(x − iy) ≡ (k + i)(k − i),
which is equivalent to (k + i)(k − i) = `(x+ iy)(x− iy), for some ` ∈ Z.

When ` = 1, we have an equality and we find that (k + i) and (k − i) are
indeed the factors of p. When ` 6= 1, (k+i) is not a Gaussian prime and still can
be factored in Z[i]; otherwise, it would be a factor of p. We know that p divides
(k + i)(k − i) but not k + i, or its conjugate, since k < p and (k + i)/p is not a
Gaussian integer. Then, k + i and p must share a common factor u that can be
found as the greatest common divisor. Since the two factors of p are x+ iy and
x+ iy, u must be one of them.

3 Wuthrich proves in Theorem 5.8 that every 0 6= α ∈ Z[i] has a unique factoriza-
tion [28].
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Finally, the factors of p can be found by computing the greatest common
divisor of p and k + i and then computing its conjugate. Since p = x2 + y2 and
N(x+ iy) = N(x− iy) = x2 +y2, by Lemma 1, the factors are Gaussian primes.

Given a method for factoring a prime number p ≡ 1 mod 4 in Z[i], Badawi et
al. propose Algorithm 3, which makes much faster the step of precomputing a
k-th root of i for a prime p ≡ 1 mod 4 [3]. The method starts by finding the
factorization p = f0 · f1 ∈ Zp[i] using the Algorithm 1.

Algorithm 2: sample generator: Return a generator for the cyclic
group Z[i] mod f .

Input: A prime number p that defines GF (p2) and a factor of p denoted by
f ∈ Zp[i].

Output: A generator ζ for the cyclic group Z[i] mod f .
1 do
2 a = sample(Zp)
3 b = sample(Zp)
4 ζ = (a+ bi) mod f
5 for j = 1; j < p; j = j + 1 do
6 d = ζj mod f
7 if d = 1 and j = p− 1 then
8 return ζ mod p

9 while True

At this point, we have that each Gaussian prime fj , with j = {0, 1}, defines
a cyclic group corresponding to the set of Gaussian integers modulo fj . The
next step is to find a generator for each of these two cyclic groups by using
the Algorithm 2. In Algorithm 2, the procedure sample(Zp) returns an element
sampled from Zp following a uniform distribution, which is used to compute
ζj ∈ Z[i] mod fj . The algorithm samples at random an element until a generator
is found, i.e. an element with order equals to p−1. Then, a k-th root of i modulo

p, denoted as h, is constructed via CRT using that hj = ζ
(p−1)

4n
j mod fj , with

j = {0, 1}.
Euclid’s GCD algorithm for Gaussian integers is almost identical to the in-

teger version. Each iteration consists of a trial division with remainder. If we’re
looking for gcd(a, b), then q = floor(a/b), and if r = a − q · b 6= 0 we return
gcd(b, r).

2.5 Division and rounding inside the RNS domain

Some parts of BFV are hardly compatible with RNS, such as coefficient-wise
division and rounding used in decryption and homomorphic multiplication. Be-
cause of that, two variants of BFV are current present in the literature, BEHZ-
BFV and HPS-BFV, which propose slight modifications to the cryptosystem to
support those operations in the RNS domain [6, 22].
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Algorithm 3: Compute the k-th primitive root of i mod p, for a prime
number p ≡ 1 mod 4.

Input: An integer k and a prime p ≡ 1 mod 4.
Output: The k-th primitive root of i mod p.

1 f0, f1 = decompose in gaussian primes(p)
2 do
3 for j = 0; j < 2; j = j + 1 do
4 ζj = sample generator(fj)

5 hj = ζ
b(p−1)/(4k)c
j mod fj

6 h = f1 ·
(
f−1
1 · h0 mod f0

)
+ f0 ·

(
f−1
0 · h1 mod f1

)
mod p

7 if hk ≡ i mod p then
8 return h

9 while True

The strategy in BEHZ-BFV is to implement base extension tools and deal
with the division and rounding steps in larger bases, correcting computing errors
in intermediary steps. Their idea also requires choosing new parameters for the
scheme and dealing with a new level of noise added to the ciphertext by their
technique.

Halevi, Polyakov, and Shoup (HPS-BFV) followed the idea of handling this
issue by working on a bigger base but took a simpler approach. Rather than
executing inexact methods and correcting errors later, their work shows how
to more precisely execute such operations. Thus, their proposal adds negligible
noise to the ciphertexts, does not require new parameters, and is much simpler
to implement.

Both variants of BFV take the fact that q is not defined as a prime integer.
Thus, they represent and work with Rq polynomials in an RNS base composed
by a factorization of q. One of the advantages of doing this is the automatic
merge of the RNS bounds, defined in Section 2.2, with the ciphertext coefficient
domain. Moreover, they use a marginally different procedure for generating the
evk from what is defined in Section 2.1. First proposed in BEHZ-BFV, they use
the decomposition of q in an RNS base instead of the standard digit decomposi-
tion w proposed by Fan and Vercauteren. They argue that both decompositions
have the same size and, because of that, can similarly control the noise growth
without any security implications.

The HPS-BFV methods were proposed as follow:

CRT Basis Extension(A,B): Extend the operand from base A to base B.

Simple scaling(A, t, q): For an operand in base A, compute the equivalent
polynomial “scaled-down” by t/q and rounding to the nearest integer in
base {t}.

Complex scaling(A,B, t, q): For an operand in base A, compute the equiva-
lent polynomial “scaled-down” by t/q and rounding to the nearest integer
in base B. This more general method does not guarantee accuracy of the
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result. However, the difference is negligible in the context of homomorphic
multiplication and can be interpreted as part of the intrinsic operation noise.

The division and rounding on BFV’s decryption are computed by just ap-
plying the simple scaling procedure. The homomorphic multiplication, however,
requires a few more steps and depends on a larger base, as it can be seen in
Algorithm 4.

Algorithm 4: Overview of the RNS homomorphic multiplication for
Halevi, Polyakov, and Shoup (HPS-BFV) technique

Input: ct1, ct2 ∈ Rq.
Output: ctmult ∈ Rq.

1 ct
′
1 ← base extension(ct1) // Extend ct1 and ct2 from q to q ∪ p

2 ct
′
2 ← base extension(ct2)

3 ct
′
? ← (ct1 ? ct2) ∪ (ct

′
1 ? ct

′
2) // Multiply ciphertexts in both bases

4 c̃tmult ← complex scaling(ct
′
?) // Multiply by t/q and round to base q

5 ctmult ← RelinRNS(c̃tmult) // Apply relinearization

6 return ctmult

Lastly, the authors of HPS-BFV present a performance analysis that demon-
strates that their procedures are not only simpler but also have lower complexity
and noise growth than those proposed by Bajard et al. .

3 Efficient CUDA operation on cyclotomic rings

An efficient implementation of the arithmetic of cyclotomic polynomial rings
requires a convenient approach for the polynomial multiplication and a proper
data representation, not only with low computational complexity but also that
fits well in the processing hardware. This Section provides optimization strategies
for implementing polynomial arithmetic on CUDA.

3.1 Fast polynomial multiplication

Let a and b be n-degree polynomials such that a(x) =
∑n−1

j=0 ajx
j and b(x) =∑n−1

j=0 bjx
j . Their product is defined as c(x) = a(x)·b(x) =

∑n−1
i=0

∑n−1
j=0 aibjx

i+j .

The complexity to compute c(x) using this formulation is Θ
(
n2
)
, which means

that performance will be seriously affected with the increase of the degree.
In the context of cryptosystems based on RLWE, as observed by Lindner and

Peikert, security is strongly related to the degree of the polynomial ring [23].
Specifically on BFV, Player concludes that a parameter set nowadays consid-
ered secure, with an estimated security upper bound close to λ = 128, requires
n between 211 and 215 [26]. Hence, an efficient implementation of polynomial
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multiplication for operands with large degree is vital for the performance of the
cryptosystem.

FFT-based transforms provide a domain in which the polynomial multiplica-
tion complexity is reduced to Θ (n), and among those, the DGT is a promising
variant defined over GF (p2). As introduced in Section 2.3, this field can be
represented as the set of Gaussian integers Zp[i] = {a+ ib | a, b ∈ Zp}, which
enables the polynomial folding of inputs and consequently halves their degree.
This folding works in a way that, for a polynomial P (x) =

∑n−1
j=0 aj ·xj , we have

fold(P (x)) =
∑n/2−1

j=0 (aj + i · aj+n/2) · xj , for i =
√
−1.

Considering the use of Gaussian integer arithmetic, described in more depth
at Section 2.3, a first impression may be that the reduction of the polynomial
degree is nullified by the increased cost of the arithmetic due to the quadratic
extension. However, it is important to notice that, by working with half the
coefficients, only half the roots, like those in Definition 2, are required when
compared to the FFT or the NTT. In this way, in a memory-constrained scenario,
this property implies a speedup caused by fewer memory accesses and enables
a more coalesced pattern. In the case of CUDA, such operations may target
the GPU’s global memory, which is big in size but has high access latency, or
even shared or constant memories, which are fast but very small. The resulting
increased arithmetic density favors GPU implementations.

Badawi et al. propose Algorithm 5 for polynomial multiplication through the
DGT. It first folds both input signals and then applies a twisting by powers of
k−th primitive roots of i, which provides a negacyclic convolution. The latter
equips the algorithm with a free polynomial reduction by a cyclotomic polyno-
mial [14]. Finding such a root is a complex computational task usually performed
by brute force when p is sufficiently small. Otherwise, numerical methods may
be used. We offer in Section 2.4 a suggestion for construction of these roots.

There are no constraints regard the output order of the forward and the input
order of the inverse DGT algorithms for polynomial multiplication, as long as
both match. So, the bit-reversal procedure, a usual operation in FFT implemen-
tations, is not required here. An efficient implementation avoids such procedure
by selecting a decimation-in-frequency (DIF) algorithm for the forward trans-
form and a decimation-in-time (DIT) algorithm for the inverse, as defined by
Chu and George [12]. At this work, we follow the proposal of Badawi et al. and
choose the Gentleman-Sande, a DIF, and the Cooley-Tukey, a DIT, algorithms
for the forward and inverse versions of the DGT, respectively [3].

The canonical formulation of these contain a combination of three nested
loops which increases the complexity of its implementation, especially on the
CUDA architecture. This structure creates dependencies between the loops and
disturb parallel execution. So, for better compatibility to the CUDA program-
ming model, they had to be rewritten by wiping out one layer of nesting and
leaving only two loops, an outer loop related to the stride, and an inner loop
that asserts the access patterns. For each outer loop iteration, the inner one can
be completely parallelized. Our proposals for these have a much weaker depen-
dency between iterations and can be seen in Algorithms 6 and 7. The bit-reversal
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Algorithm 5: Polynomial multiplication in Zp[x]/〈xn + 1〉 via DGT

Input: Polynomials a, b ∈ Zp[x]/〈xn + 1〉, p a prime number, n a power-of-two
integer, and h a primitive n

2
-th root of i modulo p.

Output: c = a · b ∈ Zp[x]/〈xn + 1〉.
1 for j = 0; j < n/2; j = j + 1 do
2 a′j = aj + iaj+n/2 // Folding the input polynomials

3 b′j = bj + ibj+n/2

4 for j = 0; j < n/2; j = j + 1 do
5 a′j = hj · a′j (mod p) // Applying the right-angle convolution

6 b′j = hj · b′j (mod p)

7 a′ = DGT(a′) // Computing the DGT of both operands

8 b′ = DGT(b′)
9 for j = 0; j < n/2; j = j + 1 do

10 c′j = a′j · b′j (mod p) // Component-wise multiplying in Zp[i]
11 c′ = IDGT(c′) // Computing the IDGT of the multiplication result

12 for j = 0; j < n/2; j = j + 1 do
13 u = h−j · c′j (mod p) // Removing the twisting factors

14 cj = ure // Unfolding the output polynomial

15 cj+n
2

= uim

16 return c

operation is present in both for completeness, but as aforementioned, it can be
omitted.

Algorithm 6: Rewritten forward DGT via Gentleman-Sande

Input: A folded vector x ∈ Z[i]k, p a prime number, k a power-of-two integer,
and g a primitive k-th root of unity modulo p.

Output: x← DGT(x) in bit-reversed ordering.
1 for s = 0; s < blog(k)c; s = s+ 1 do
2 m = k

2(s+1)

3 for l = 0; l < k/2; l = l + 1 do
4 j = 2ml

k

5 i = j +
(
l mod k

2m

)
· 2m

6 a = g
j· k

2(log(k)−s) (mod p)
7 (u, v) = (x[i], x[i+m])
8 (x[i], x[i+m]) = (u+ v, a · (u− v)) (mod p)

9 return bit-reversal(x)

3.2 An improved and hierarchical DGT

The procedures described in Algorithms 6 and 7 require synchronization at the
end of each iteration of the outer loop; otherwise, there is no guarantee of data
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Algorithm 7: Rewritten inverse DGT via Cooley-Tukey

Input: A vector x ∈ Z[i]k in bit-reversed order, p a prime number, k a
power-of-two integer, and g a primitive k-th root of unity modulo p.

Output: x← IDGT(x) in standard ordering.
1 m = 1
2 x = bit-reversal(x)
3 for s = 0; s < blog(k)c; s = s+ 1 do
4 for l = 0; l < k/2; l = l + 1 do
5 j = 2ml

k

6 i = j +
(
l mod k

2m

)
· 2m

7 a = g
−j· k

2s+1 (mod p)
8 (u, v) = (x[i], x[i+m])
9 (x[i], x[i+m]) = (u+ a · v, u− a · v) (mod p)

10 m = 2 ·m
11 return x · k−1 (mod p)

consistency. On CUDA, this enforces a limitation on the polynomial degree at
the cost of latency, since the biggest data structure that provides such level of
synchronization is Thread Blocks, and its dimension is limited to 1024 threads
in modern hardware. An alternative implementation involves calling a different
CUDA kernel for each iteration, imposing a forced synchronization at CPU-side.
This incurs in a considerable overhead caused by several kernel calls.

In this scenario, we propose a technique for splitting the DGT transform into
smaller blocks that better fits the processing hardware and does not require the
synchronization of large sets of threads, called hierarchical DGT. It is an adapta-
tion of the four-step FFT algorithm, originally proposed by David H. Bailey [5]
and later on revisited by Govindaraju et al. called hierarchical FFT [20].

The general idea of the hierarchical DGT, referred to as HDGT and HIDGT
for the forward and inverse transformations, respectively, is to split the DGT
computation over Zp[x]/〈xn+1〉 into computations in smaller rings with optimal
size near

√
n. In practice, the vector of coefficients is treated as a matrix and

the DGT is performed over the columns and rows of this matrix. The objective
of this is to avoid the scenario in which one is unable to compute the DGT of an
entire polynomial in a single CUDA kernel call. We move to a higher granularity
approach in which we apply the transform multiple times over arbitrary small
polynomials that can perfectly fit in our processing architecture.

The HDGT is described in Algorithm 8. Firstly, the polynomial a(x) is rep-
resented by taking its coefficient embedding as a = (a0, a1, . . . , an−1). To be
represented in the DGT domain GF (p2), a ∈ Zn

p is folded as a (n/2)-size vector

of Gaussian integers ã ∈ Zp[i]n/2, as described in Section 3.1. As discussed by
Crandall, this folding combined with the “right-angle” convolution allows the
resulting polynomial being reduced modulo xn + 1 for free via the negacyclic
convolution [14]. In Algorithm 8, the “right-angle” convolution is given by mul-
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tiplying the j-th coefficient of ã by hj , for j ∈ Zn/2, where h is the (n/2)-th
primitive root of i in Zp[i].

After the folding and twisting procedures, the (n/2)-length vector of Gaussian
integers ã is treated as a matrix with dimensions (Nr, Nc). These dimensions shall
be chosen so that each coefficient’s subset fit in the processing hardware. In our
case, the objective is to find a subset that fits in the GPU’s shared memory, so
that the DGT can be performed in a single Thread Block. More details of this
is discussed in Section 4. Moreover, Bailey recommends that both dimensions
should be as close as possible to

√
n, for efficiency purposes. For example, when

n = 8192, the vector resulting from the folding has length n/2 = 26 · 26. Then,
the recommended selection of values for Nr and Nc is 26.

The calls to the DGT algorithm in lines 5 and 10 are taken as in the Algo-
rithm 6 but without the bit-reversal in the last step. For that, the called “step-2”
of Bailey’s method had to be rewritten to tolerate the lack of such operation. In
line 8, the twiddle factors are the powers of g, the (n/2)-th root of unity modulo
p. Since the output of the DGT is not corrected from the bit-reversed order,
the twiddle factors become gbit-reversal(j)·k instead of gj·k, which matches the
position of the corresponding element in ã when it is seen as a matrix.

Algorithm 8: Hierarchical forward DGT

Input: A polynomial a ∈ Zp[x]/〈xn + 1〉, p a prime number, n = 2 ·Nr ·Nc a
power-of-two integer, h a primitive root of i modulo p, and g a
primitive root of unity modulo p.

Output: ã = HDGT(a).
1 for j = 0; j < n/2; j = j + 1 do
2 ãj = aj + iaj+n/2 // Fold the input polynomial

3 ãj = ãj · hj (mod p) // Twist the folded polynomial

4 for k = 0; k < Nc; k = k + 1 do
5 ã ,k = DGT(ã ,k) // Step 1: Apply the DGT through Nc columns

6 for j = 0; j < Nr; j = j + 1 do
7 for k = 0; k < Nc; k = k + 1 do

8 ãj,k = ãj,k · gbit-reversal(j)·k (mod p) // Step 2: Multiplication by

the twiddle factors in bit-reversal order

9 for j = 0; j < Nr; j = j + 1 do
10 ãj, = DGT(ãj, ) // Steps 3 and 4: Apply the DGT through the Nr

rows

11 return ã

The inverse counterpart of the hierarchical DGT is described in Algorithm 9
and adopts the IDGT transform via Cooley-Tukey, described in Algorithm 7,
without bit-reversing the input vector. The algorithm executes the inverse steps
of the forward transform by first applying the IDGT over the rows of ã. The
twiddle factors are removed by multiplying âj,k by g−bit-reversal(j)·k, since the
column indexes of the output of the previous step still are in bit-reversed order.
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Considering that the powers of g can be precomputed, they can be multiplied by
N−1

c , avoiding the additional multiplication. Finally, the IDGT is applied over
the columns of â and the matrix indexes are back to standard ordering. Following
the same approach, the powers of h−1 can be precomputed already multiplied
by the scalar N−1

r . This avoids the multiplication by the scaling factor when
applying the IDGT over the columns of â.

Algorithm 9: Hierarchical inverse DGT

Input: ã = HDGT(a), p a prime number, n = 2 ·Nr ·Nc a power-of-two
integer, h a primitive root of i modulo p, and g a primitive root of
unity modulo p.

Output: A polynomial a ∈ Zp[x]/〈xn + 1〉.
1 for j = 0; j < Nr; j = j + 1 do
2 âj, = IDGT(ãj, ) // Steps 3/4: Apply IDGT to each of Nr rows

3 for j = 0; j < Nr; j = j + 1 do
4 for k = 0; k < Nc; k = k + 1 do

5 âj,k = âj,k · g−bit-reversal(j)·k ·N−1
c (mod p) // Step 2: Remove

twiddle factors

6 for k = 0; k < Nc; k = k + 1 do
7 â ,k = IDGT(â ,k) // Step 1: Apply IDGT to each of Nc columns

8 for j = 0; j < n/2; j = j + 1 do
9 âj = âj · h−j ·N−1

r (mod p) // Remove the twisting

10 aj = âjre // Unfold the output polynomial

11 aj+n
2

= âjim
12 return a

As in FFT and NTT-based algorithms for polynomial multiplication, the two
operands are evaluated using the HDGT for further point-wise multiplication.
The polynomial corresponding to a ·b in Zp[x]/〈xn+1〉 is obtained by computing
the HIDGT. These steps are described in Algorithm 10. As can be seen, it is
similar to Algorithm 5, but the folding and twisting procedures are merged inside
the transforms.

3.3 Polynomial representation and memory locality

The usability of an RLWE-based cryptosystem requires the careful selection of
a parameter set that satisfies all the security constraints of the application. For
instance, with BFV one must select q, t, n, and σ such that a security level λ
is achieved. However, more than that, these parameters together determine the
multiplicative depth supported by the scheme. Thus, as discussed by Fan and
Vercauteren, the selection of such parameters is too complex to be affected by
the particularities of the implementation [18].

A constraint for choosing those is the hardware instruction set. By selecting a
big q one may be confronted by the lack of hardware support for native processing
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Algorithm 10: Polynomial multiplication in Zp[x]/〈xn + 1〉 via hierar-
chical DGT
Input: Polynomials a, b ∈ Zp[x]/〈xn + 1〉, p a prime number, and n a

power-of-two integer.
Output: c = a · b ∈ Zp[x]/〈xn + 1〉.

1 ã = HDGT(a)

2 b̃ = HDGT(b)
3 for j = 0; j < n/2; j = j + 1 do

4 c̃j = ãj · b̃j (mod p) // Point-wise multiplication over Zp[i]
5 c = HIDGT(c̃)
6 return c

of the coefficients. Through RNS, as described in Section 2.2, we handle this by
splitting big integers in small residues following the limits of the underlying
machine.

The link between the cryptosystem and RNS must be carefully designed so
that data secrecy is provided with suitable performance. For that, Gentry et
al. suggested the double-CRT representation, which encapsulates data into two
layers [19]. The first layer is the RNS representation, as described in Definition 1.
After that, a set of polynomial residues with full support for native hardware
evaluation of addition and multiplication is obtained. However, we still need a
second layer for the latter, since the multiplication of polynomials can achieve a
quite high computational complexity without some well-designed algorithm, as
mentioned in Section 3.1. Because of that, the second layer consists of moving
each residue, individually, to a different domain with a convenient property for
efficient polynomial multiplication. The original proposal of double-CRT is the
use of the NTT as this transform, but a similar approach using the FFT would
also be expected. This work, however, proposes that the second layer of the
double-CRT should use the DGT instead of the NTT, since the former appears
to suit much better the cyclotomic ring arithmetic and uses memory in a more
efficient way [3].

Another design decision, very common to HE implementations, is the selec-
tion of a special prime p for the transform, the same for all RNS residues [15,
17, 3]. For instance, let x be a polynomial, and {p0, . . . , p`−1} a set of ` pair-
wise co-primes. The usual design works with the set of transformed residues{
DGTp([x]p0

), . . . , DGTp([x]p`−1
)
}

. By using such a prime p, one is capable of
taking advantage of their intrinsic mathematical properties, as in the selection of
a Mersenne or Solinas prime, which enables the use of a very efficient modular re-
duction. Nonetheless, this approach does not interplay well with the RNS layer
and requires algorithmic efforts to correct these modular reductions and keep
consistency for each residue. In this way, the double-CRT provides a simpler solu-
tion by computing the transform layer using the co-prime related to each residue,
but at the cost of a more expensive modular reduction since, in most cases, there
are not enough special primes for the required number of residues. Thus, in
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this representation, the set of residues is
{
DGTp0

([x]p0
), . . . , DGTp`−1

([x]p`−1
)
}

.
Moreover, without the need for those corrections, we become capable of increas-
ing RNS’ residues to the biggest supported word size of the target architecture,
reducing the number of residues needed. Lastly, by choosing q =

∏`−1
i=0 we es-

tablish a bond between BFV, RNS, and the DGT.

Our state machine proposal targets the insistent maintenance of data in our
version of the double-CRT representation in GPU’s memory, as can be seen at
Figure 1. Data copy between the main memory and the GPU’s memory has
high latency and must be avoided. Also, polynomial multiplication and addition
in Rq are homomorphically supported by this representation, and because of
that consecutive operations can benefit from reducing transit back and forth
into the transformation domain. HPS-BFV methods, on the other hand, require
floating-point divisions and roundings that are not supported inside the DGT
domain, requiring data to be moved back to the intermediary state, represented
only as RNS’ residues, but not taken away the GPU’s memory. By supporting
these two states, one is capable of keeping data on the GPU’s global memory all
the time, saving memory bandwidth, and not requiring the support of expensive
multi-precision arithmetic.

Fig. 1. An optimized state machine for the cyclotomic polynomial arithmetic. Data is
kept in RNS’ domain and encapsulated by DGT for polynomial multiplications and
additions, similar to double-CRT, but solely on RNS for division and rounding by t/q.
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4 Experimental results

In this section we present spog4, a proof-of-concept implementation that con-
solidates the aforementioned techniques by exploring parallel processing on GP-
GPUs through CUDA.

Designed from scratch, spog is a modular implementation in which the
arithmetic operations are separate from the cryptosystem. More precisely, the
polynomial operations were implemented on a sister library named cuPoly,
while BFV was implemented separated on spog. Both are implemented on top
of CUDA and closely follow the sketch provided in Section 3, pursuing low-
latency methods with a simple API and stretching the size of the residues to the
highest supported by modern CUDA-supported GPUs, which is 63-bit residues
with 1 bit for storing the sign. By doing this, we guarantee that BFV can be
easily replaced by any other scheme based on the RLWE problem; thus, our
work is not restricted to a single scheme. The entire arithmetic implementation
can also be replaced without affecting the cryptosystem code. Hence, spog is
flexible enough to encourage future work to develop and test different setups
using the presented libraries.

4.1 Related work

We consider Badawi, Polyakov, Aung, Veeravalli, and Rohloff, work, referred
as BPAVR, the state-of-the-art implementation in GPUs for BFV [2]. It com-
plements Halevi, Polyakov, and Shoup proposal and provides the first imple-
mentation of the HPS-BFV method on a high-end NVIDIA Tesla V100 GPU,
demonstrated by the authors to be the fastest and most scalable variant of the
scheme when compared to BEHZ-BFV [22, 6].

BPAVR do not describe all details regarding their performance results, only
presenting latency measurements for decryption and homomorphic multiplica-
tion. Because of that, and the fact of their source code is not publicly avail-
able, we also consider a similar work of Badawi, Veeravalli, Mun, and Aung,
which offers timings for encryption, decryption, homomorphic addition, and ho-
momorphic multiplication for a CUDA-based BFV implementation, denoted by
BVMA[4]. The authors compare BVMA with Microsoft SEAL, a reference on
the field with support for HPS-BFV [10]; and NFLlib-FV, an equally important
work implementing the BEHZ-BFV variant; with impressive speedups on all sce-
narios [25]. Despite of their efforts for parallel computation, the other libraries
presented in that work are CPU-based implementations and thus show a signif-
icant slowdown, up to 27 times, when compared to BVMA. Hence, we do not
believe that the direct comparison with spog is relevant to this paper.

Lastly, both works apply the DGT as the underlying solution to handle poly-
nomial multiplication. So, by comparing spog with them, we can collect evi-
dence about the suitability of the HDGT over the DGT for such task.

4 spog is an acronym for “Secure Processing on GPGPUs”.
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4.2 Execution environment, methodology, and BFV parameters

The experimental results presented in the next Sections for BPAVR or BVMA
are those reported by the authors in their corresponding publications. We do
not re-execute the benchmarks provided in the related work. This decision is
based on the fact that the implementations and benchmarking tools were not
made available to the community. Because of that, we decided to collect our
measurements in a similar processing hardware adopted in the related works
using the same parameters.

We used Google Cloud’s virtual machines (VMs) for emulating the compu-
tational environment described in those works. Two instances were considered:
gc.k80 and gc.v100 , which provide a NVIDIA Tesla K80 GPU, used on BVMA
measurements; and a NVIDIA Tesla V100 GPU, used on BPAVR. We precisely
followed the execution environment described in each work, running GCC 7.2.1
and CUDA 8.0 at gc.k80 ; and GCC 7.3.1 and CUDA 9.0 at gc.v100 . CUDA
events were used to measure execution time, following the common methodol-
ogy from the literature.

Our benchmark targets the most relevant primitives for HE. Regarding BFV,
implemented in spog, we consider encryption, decryption, homomorphic addi-
tion, and homomorphic multiplication (including the relinearization cost). On
the polynomial arithmetic side, implemented in cuPoly, we focus on the per-
formance gains caused by the replacement of the canonical DGT by the HDGT.

In our measurements, we do not include initialization steps, which are per-
formed only once and have negligible effect on long term runs. Because of that,
the latency for generating cryptographic keys is not described in this work. Sim-
ilarly, sampling is not explicitly considered in the benchmarks, despite of being
included in the timings for encryption.

Two different setups are considered for compatibility with each work, both
choosing t = 256 for the plaintext domain.

BPAVR parameters: Five different polynomial ring settings are used, iden-
tified by the pairs (log(q), log(n)) ∈ {(60, 11), (60, 12), (120, 13), (360, 14),
(600, 15)} for the ciphertext coefficient domain and the ring degree, respec-
tively. These offer a security level of at least 128 bits [2].

BVMA parameters: Five different polynomial ring settings are used, identi-
fied by the pairs (log(q), log(n)) ∈ {(62, 11), (186, 12), (372, 13), (744, 14),
(744, 15)} for the ciphertext coefficient domain and the ring degree, respec-
tively. These offer a security level of 80 bits [4].

4.3 Probabilistic sampling on the GPU

The BFV cryptosystem requires sampling from three probabilistic distributions
for key generation and encryption: uniform in Rq; narrow, also called uniform
in R2; and discrete Gaussian distribution. In this work, we target homomorphic
encryption schemes and, specially, the homomorphic operations. Hence, we have
not investigated optimal strategies for implementing such distributions.
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cuRAND, a NVIDIA probabilistic library, was used for that. It offers sam-
pling directly to the GPU memory, avoiding the cost of data copy. Sampling
uniformly at random from Rq and R2 is implemented through its uniform sam-
pler, and the result is reduced by q or 2, respectively. On the other hand,the
discrete Gaussian distribution is not supported by this library. Because of that,
an alternative implementation of such sampler works by truncating a continuous
Gaussian distribution, natively supported by cuRAND. The statistical validity
of this design still needs to be asserted at the cost of compromising the security;
however, this is a common implementation decision in the literature and is also
done by the related works cited in Section 4.1.

4.4 SPOG operations

In Table 1 we compare spog with BVMA on gc.k80 , and with BPAVR on
gc.v100 . As mentioned in Section 4.1, BPAVR’s authors offers measurements for
decryption and homomorphic multiplication only, what inhibits the comparison
with spog for encryption and homomorphic addition.

One of the major motivations for using a FHE scheme is the applicability
of its homomorphic primitives, and because of that, we focus on improving the
performance of these. As can be seen, homomorphic multiplication, a critical and
known expensive operation, reports speedup between 1.9 and 3.6 times when
compared to the BVMA. When compared to the BPAVR these speedups lies
between 2 and 2.4. The different characteristics between both setups, considering
the processing hardware and the cryptosystem parameters, makes the direct
comparison between both data sets impossible, however the performance gains
are consistent.

Homomorphic addition, a much simpler operation, presented gains between
2 and 5.2 times when compared to the BVMA. The latter is probably not related
to the HDGT, since this procedure is essentially a coefficient-wise addition, but
to the better state machine our version of the double-CRT offers, as described
at Section 3.3.

Lastly, despite our focus in this work does not being on encryption and de-
cryption, the faster polynomial multiplication strategy and the improved state
machine offered up to 4.6 times faster encryption and about 2 times faster de-
cryption.

4.5 Efficiency of the HDGT

A major contribution of this work is the HDGT, a novel formulation of the
DGT which better explores the parallel capability of GPUs and compensate its
memory limitations. However, a carefully evaluation of its quality must be done
to understand the performance gains on realistic scenarios. Thus, at this Sec-
tion, we provide a comparison between the HDGT and the best implementation
designs for the canonical DGT.

As discussed before, the HDGT works by splitting a high-degree polyno-
mial, which does not fit in the processing hardware, and applying the DGT
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Table 1. Comparison between spog and two state-of-the-art implementations,
BVMA and BPAVR. Average running time of 100 independent executions, in millisec-
onds, for the most relevant BFV operations on gc.k80 and gc.v100 virtual machines
for the setups described in Section 4.2.

gc.k80 gc.v100

logn 11 12 13 14 logn 12 13 14 15

spog 0.303 0.309 0.575 1.630 - - - - -

Encrypt BVMA 0.541 1.440 2.645 6.657 - - - - -

Ratio 1.783 4.663 4.604 4.084 - - - - -

spog 0.089 0.098 0.191 0.557 spog 0.029 0.031 0.049 0.099

Decrypt BVMA 0.151 0.194 0.252 0.610 BPAVR 0.054 0.059 0.087 0.111

Ratio 1.693 1.988 1.321 1.095 Ratio 1.862 1.903 1.776 1.121

spog 0.009 0.010 0.021 0.066 - - - - -

Hom. Add. BVMA 0.037 0.052 0.068 0.127 - - - - -

Ratio 4.110 5.200 3.238 1.924 - - - - -

spog 0.926 1.214 3.232 15.359 spog 0.423 0.472 0.823 2.325

Hom. Mul. BVMA 3.343 3.873 7.700 28.953 BPAVR 0.859 1.012 2.010 4.826

Ratio 3.609 3.190 2.383 1.885 Ratio 2.031 2.144 2.442 2.076

in a divide-and-conquer approach through blocks of arbitrarily small size. To
evaluate this design, we implemented the canonical DGT adopting two different
strategies, namely DGT-I and DGT-II. The former uses a multi-kernel design
which executes the loop synchronization employing a different CUDA kernel for
each iteration. This way, the transformation requires log n

2 kernels to process
an n-degree polynomial. The latter uses a single-kernel design, which is only
compatible with polynomial rings with degree smaller or equal than 4096 since
these are the only that fit GPU’s shared memory. These strategies are better
described in Section 3.2. Lastly, we verified the impact of this change in two
important procedures direct affected by the DGT, encryption and homomorphic
multiplication.

Table 2 presents the latency measurements. The HDGT is about 2 times
faster than the DGT-I, which results in speedups ranging from 1.4 to 2.2 times
on BFV’s primitives. The DGT-II, though, presents a slowdown on most of the
cases on 2048-degree rings, which suggests that the single-kernel design better
accommodates smaller instances. Such effect doesn’t sustain in 4096-degree rings,
when a more consistent speedup is achieved, particularly on gc.v100 that better
handles the high-granularity of the HDGT. No other comparison is feasible with
the DGT-II since this model is not scalable to bigger rings.
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Table 2. Comparison between spog running the canonical DGT using a multi-kernel
and a single-kernel strategy, called DGT-I and DGT-II, respectively; and the HDGT.
The first row group compares the transform alone, while the other groups compare
the performance impact on BFV primitives. Average running time of 100 independent
executions, in milliseconds, on gc.k80 and gc.v100 virtual machines for the setups
described in Section 4.2.

gc.k80 gc.v100
logn 11 12 13 14 15 11 12 13 14 15

DGT

HDGT 0.059 0.071 0.146 0.432 0.651 0.018 0.019 0.020 0.031 0.073

DGT-I 0.114 0.131 0.281 0.711 1.637 0.035 0.034 0.040 0.078 0.188
Ratio 1.934 1.864 1.925 1.644 2.517 1.934 1.815 2.040 2.487 2.593

DGT-II 0.052 0.091 - - - 0.026 0.047 - - -
Ratio 0.881 1.292 - - - 1.423 2.492 - - -

Encrypt

HDGT 0.303 0.309 0.575 1.630 3.127 0.103 0.098 0.099 0.153 0.315

DGT-I 0.571 0.499 0.861 2.597 5.835 0.144 0.146 0.159 0.287 0.704
Ratio 1.882 1.614 1.499 1.593 1.866 1.395 1.498 1.615 1.883 2.238

DGT-II 0.276 0.377 - - - 0.120 0.188 - - -
Ratio 0.910 1.220 - - - 1.163 1.921 - - -

HDGT 0.926 1.214 3.232 15.359 30.990 0.436 0.423 0.472 0.823 2.325

Hom. DGT-I 1.795 2.031 4.231 19.952 42.800 0.795 0.783 0.913 1.609 4.078
Mult. Ratio 1.938 1.673 1.309 1.299 1.381 1.825 1.850 1.934 1.956 1.754

DGT-II 0.642 0.983 - - - 0.362 0.466 - - -
Ratio 0.693 0.810 - - - 0.830 1.102 - - -

5 Conclusion

This work investigates strategies to achieve an efficient implementation of the
leveled homomorphic encryption scheme BFV on the CUDA architecture. To ful-
fill this objective, we explored different approaches for the utilization of the DGT
in the reduction of the computational complexity of polynomial multiplications.
The outcome is an optimized version of the hierarchical DGT, a high granularity
implementation of DGT that better fits the GPU processing. Furthermore, the
double-CRT concept is revisited and an efficient state machine is proposed so we
can avoid the costs to alternate between DGT and RNS domains, and between
the machine’s main memory and GPU’s memory.

Our implementation of BFV, named spog, is compared with two other
works in the literature, BVMA and BPAVR, that represent the state-of-the-art
implementations on CUDA. Homomorphic addition, in spite of being a sim-
ple and usually fast operation, presented speedups between 2 and 5.2 times over
the BVMA. Furthermore, spog’s homomorphic multiplication showed itself be-
tween 1.9 and 3.6 times faster over the BVMA.

As future work, a direct comparison between HDGT and NTT is desired to
proper verification of the benefits in GPUs. Moreover, we intend to verify the
gains of applying our methods on other relevant RLWE-based cryptosystems



Faster Homomorphic Encryption over GPGPUs via hierarchical DGT 23

such as the CKKS [11], and spog as a tool for the acceleration of privacy-
focused deep learning algorithms.
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A Properties of Gaussian integers

This Appendix presents important properties of Gaussian integers and useful
results that can be applied on their implementation. In the following, we recall
some important properties stated by Wuthrich that are useful to this work [28].

Definition 3 (Norm). The norm of a Gaussian integer is defined as its product
with its conjugate5. That is, N(a+ib) = (a+ib)·(a−ib) = a2+b2, so N(α) = α·α.

Proposition 1 (Wuthrich’s Proposition 5.7). For each prime number p ≡ 1
mod 4 there are exactly two Gaussian primes π and π of norm p.

Lemma 3 (Wuthrich’s Lemma 5.6). Let p be a prime number with p ≡ 1
mod 4. Then there exists a Gaussian prime π such that p = π.π.

Lemma 4 (Wuthrich’s Lemma 5.10). Any prime p ≡ 1 mod 4 can be writ-
ten as a sum of two squares. This is a manifestation of Fermat’s theorem on
sums of two squares.

From Lemma 3 and Proposition 1, if p is prime such that p ≡ 1 mod 4, then
we know that it can be factored as a product of exactly two Gaussian primes
that are the conjugate of each other. Lemma 4 is a direct consequence since we
know that a prime p ≡ 1 mod 4 can be factored as p = π ·π and, assuming that
π = a+ bi, we obtain that π · π = a2 + b2.

5 Let x = a+ ib be a Gaussian integer. If y is x’s conjugate then y = a− ib.


