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FHE allows evaluation for addition and multiplication without the
need to decrypt.

Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/
BFV is currently one of the primary schemes.

Performance is still a challenge.
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Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.
A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.

A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.
A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

Homomorphic Encryption
Definition

Homomorphic Encryption (HE)
Let

E and D be a pair of encryption and decryption functions,
m1 and m2 be plaintexts.

The pair (E , D) forms an homomorphic encryption scheme for some
operator � if and only if the following holds:

D ( E (m1) ◦ E (m2) ) ≡ D ( E (m1 � m2) ) .

For example, in Paillier’s proposal, ◦ = multiplication and � = addition.
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Homomorphic Encryption

BFV
Scheme description

RLWE-based,

Post-quantum secure,
Basic arithmetic built upon polynomial rings of the form
Rp = Zp[X ]/(XN + 1),
A security parameter λ, a plaintext domain defined as Rt ,
a ciphertext domain defined as Rq, for q � t.
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Homomorphic Encryption

BFV
Scheme description

Let pk and evk be an encryption and a relinearization key, respectively,
related to a secret key sk.

BFV.Encrypt(pk,m): Let pk = (p0, p1), sample u ← R3, and e0, e1 ← χ.
Output: ( bq/tc ·m + u · p0 + e0, u · p1 + e1 ).

BFV.Decrypt(sk, ct): Let ct = (c0, c1). Output:
m =

[⌊
t
q [c0 + c1 · sk]q

⌉]
t
.

BFV.Add(c0, c1): Output: ( c0,0 + c1,0, c0,1 + c1,1 ).
BFV.Mul(c0, c1, evk): Compute

c0 = [bt/q · c0,0 · c1,0e]q ,
c1 = [bt/q · (c0,0 · c1,1 + c0,1, ·c1,0)e]q
c2 = [bt/q · c0,1 · c1,1e]q .

and return cmul = Relin(c0, c1, c2, evk).
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CUDA overview

CUDA

Parallel computing architecture.

Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,
Local,
Constant.
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Mathematical background

Residue Number System – RNS
Mathematical background

One polynomial with huge coefficients
m

Many polynomials with small coefficients
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Mathematical background

Residue Number System – RNS
Mathematical background

Let {p0, p1, · · · , p`−1} be a set of coprimes and P ∈ Rq.

P(x) =
N∑

i=0
ai · x i ⇐⇒


P(x) mod p0,
P(x) mod p1,
P(x) mod p2,

. . .
P(x) mod p`−1
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Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:

Integer modular reduction,
Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.
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Polynomial multiplication in Rq

Not a trivial operation.
Computational complexity can reach Θ(N2).
Widely used by RLWE-based cryptosystems.

Pedro G. M. R. Alves University of Campinas March 2021 15 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.

Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.

Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31



Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Galois Transform

u ∈ GF (p2) can be represented as ure + i · uim, where
ure , uim ∈ GF (p) and i =

√
−1, also known as Gaussian Integers.

There are some convenient properties:

Negacyclic convolution,
Polynomial folding.
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HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.

A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).

Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.
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It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).
Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.

2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
a0 a1 . . . a2N−1

]
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.

3 Twisting – Mult. by powers of a
primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
(a0 + iaN) . . . (aN−1 + ia2N−1)

]
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.

3 Twisting – Mult. by powers of a
primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
ã0 ã1 . . . ãN−1

]
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1 Vector representation.
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6 Multiply Bj,k by
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through the rows.
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Description
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1 Vector representation.
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3 Twisting – Mult. by powers of a
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4 Matrix representation – (nr , nc).

5 Apply the canonical DGT
through the columns.

6 Multiply Bj,k by
gj,k = ω

bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
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...
...
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a
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through the rows.
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Description
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through the rows.
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.
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HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

HDGT(p(x)) = A0+· · ·+AN−1xN−1,

s.t. Ai ∈ GF (p2).
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spog - Secure Processing On GPGPUs

Proof-of-concept implementation written in C++.
Targets CUDA.
Applies HDGT for polynomial multiplication.
Modular implementation, separating polynomial arithmetic and
cryptosystem.

cuPoly,
HPS-BFV.

cuRAND is used for sampling.
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Data locality
spog - Secure Processing On GPGPUs
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Methodology

Comparison with other works
Methodology

spog is compared with two other works in the literature. Since none of
them release the source codes, we replicate the processing environment.

BPAVR – Badawi, Polyakov, Aung, Veeravalli, and Rohlof
Tesla V100,
but presents latency for decryption and homomorphic multiplication
only.

BVMA – Badawi, Veeravalli, Mun, and Aung,
Tesla K80,
Much more complete latency description.
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Methodology

Parameters
Methodology

Two different setups are considered for Google Cloud VMs running
NVIDIA Tesla K80 and V100, referred to as gc.k80 and gc.v100 .

log N gc.k80 gc.v100
11 62 60
12 186 60
13 372 120
14 744 360
15 744 600

Table: Lower bound for the size of q in bits.

In both cases, t = 256.
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Comparison

spog vs BVMA
Latencies

0.0
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4.0

6.0

N = 2¹¹ N = 2¹² N = 2¹³ N = 2¹⁴

Encryption Decryption Homomorphic addition Homomorphic multiplication

BVMA/SPOG ratio (gc.k80)
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Comparison

spog vs BPAVR
Latencies
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Comparison

HDGT

We compare HDGT with two implementations of its canonical
formulation:

DGT-I Multi-kernel design
Synchronization forced through log N

2 CUDA-Kernel
calls.

DGT-II Single-kernel design
Synchronization limited to block level.
Supports up to 2048-degree polynomials.
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Comparison

HDGT vs DGT-I
Latencies
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Comparison

HDGT vs DGT-II – Tesla K80
Latencies
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Comparison

HDGT vs DGT-II – Tesla V100
Latencies
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Conclusion

Future work:
Direct comparison between HDGT, NTT, and HNTT on GPUs.
spog-CKKS.
Benchmarks of complex applications running over spog-BFV and
spog-CKKS.
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