	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT

Pedro G. M. R. Alves¹ Jheyne N. Ortiz¹ Diego F. Aranha² pedro.alves@ic.unicamp.br

> ¹Institute of Computing, University of Campinas ²Department of Computer Science, Aarhus University

> > March 4, 2021

Financial Cryptography and Data Security 2021

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Introdu	ction				

• Ubiquitous data gathering is here to stay.

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Introdu	ction				
murouu					

- Ubiquitous data gathering is here to stay.
- Always a bad thing?

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Introdu	ction				
murouu					

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,

Introduction •00000	Building blocks	Polynomial multiplication	SPOG OO	Results 0000000	Conclusion
Introdu	ction				

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,
 - E-Health,

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Intro du	ation				
Introdu	CLION				

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,
 - E-Health,
 - Leisure activities,

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Introdu	ction				

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,
 - E-Health,
 - Leisure activities,
 - Traffic,

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Intro du	ation				
Introdu	CLION				

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,
 - E-Health,
 - Leisure activities,
 - Traffic,
 - **.**...

Introduction	Building blocks	Polynomial multiplication	SPOG OO	Results 0000000	Conclusion
Introdu	ction				

- Ubiquitous data gathering is here to stay.
- Always a bad thing?
 - Security,
 - E-Health,
 - Leisure activities,
 - Traffic,
 - **.**..

"Data privacy is a hard problem"

- Narayanan and Felten, 2014

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
00000	0000000	000000	00	0000000	0000

Homomorphic Encryption

<u>Plaintext</u>

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000

Homomorphic Encryption

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000

Homomorphic Encryption

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000
1					

Homomorphic Encryption

 FHE allows evaluation for addition and multiplication without the need to decrypt.

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Introdu	ction				
Homomorph	ic Encryption				

 FHE allows evaluation for addition and multiplication without the need to decrypt.

Standardization efforts are on the way.

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Introdu	ction				
Homomorph	ic Encryption				

 FHE allows evaluation for addition and multiplication without the need to decrypt.

Standardization efforts are on the way.

■ There is an open consortium - homomorphicencryption.org/

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Introdu	ction				
Homomorph	ic Encryption				

- FHE allows evaluation for addition and multiplication without the need to decrypt.
- Standardization efforts are on the way.
 - There is an open consortium homomorphicencryption.org/
 - BFV is currently one of the primary schemes.

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000
Introdu	ction				
Homomorph	ic Encryption				

- FHE allows evaluation for addition and multiplication without the need to decrypt.
- Standardization efforts are on the way.
 - There is an open consortium homomorphicencryption.org/
 - BFV is currently one of the primary schemes.
- Performance is still a challenge.

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000
Our cor	ntributions				

We propose implementation techniques for performance enhancement of RLWE-based schemes on GPUs.

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Our cor	ntributions				

- We propose implementation techniques for performance enhancement of RLWE-based schemes on GPUs.
 - Polynomial multiplication is a costly operation. DGT can help with that.
 - A divide-and-conquer formulation for the Discrete Galois Transform (HDGT).
 - A state machine is described to improve locality.

Introduction	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	000000	0000
Our co	ntributions				

- We propose **implementation techniques** for performance enhancement of RLWE-based schemes on **GPUs**.
 - Polynomial multiplication is a costly operation. DGT can help with that.
 - A divide-and-conquer formulation for the Discrete Galois Transform (HDGT).
 - A state machine is described to improve locality.

A proof-of-concept implementation is compared with state-of-the-art works.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	••••	000000	00	0000000	0000
Homomorphic Encryption					

Homomorphic Encryption

Homomorphic Encryption (HE)

Let

- **E** and **D** be a pair of **encryption and decryption** functions,
- m_1 and m_2 be plaintexts.

The pair (E, D) forms an **homomorphic encryption scheme** for some operator \diamond if and only if the following holds:

$$\boldsymbol{D} (\boldsymbol{E}(m_1) \circ \boldsymbol{E}(m_2)) \equiv \boldsymbol{D} (\boldsymbol{E}(m_1 \diamond m_2)).$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	• 00 0000	000000	00	0000000	0000
Homomorphic Encryption					

Homomorphic Encryption

Homomorphic Encryption (HE)

Let

- **E** and **D** be a pair of **encryption and decryption** functions,
- m_1 and m_2 be plaintexts.

The pair (E, D) forms an **homomorphic encryption scheme** for some operator \diamond if and only if the following holds:

$$\boldsymbol{D} (\boldsymbol{E}(m_1) \circ \boldsymbol{E}(m_2)) \equiv \boldsymbol{D} (\boldsymbol{E}(m_1 \diamond m_2)).$$

For example, in **Paillier's proposal**, $\circ =$ multiplication and $\diamond =$ addition.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
Homomorphic Encryption					

BFV

Scheme description

RLWE-based,

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
Homomorphic Encryption					

BFV Scheme description

RLWE-based,

Post-quantum secure,

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Homomorphic Encryption					

BFV Scheme description

- RLWE-based,
- Post-quantum secure,
- Basic arithmetic built upon polynomial rings of the form $R_p = \mathbb{Z}_p[X]/(X^N + 1)$,

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Homomorphic Encryption					

BFV Scheme description

- RLWE-based,
- Post-quantum secure,
- Basic arithmetic built upon polynomial rings of the form $R_p = \mathbb{Z}_p[X]/(X^N + 1)$,
- A security parameter λ , a plaintext domain defined as R_t , a ciphertext domain defined as R_q , for $q \gg t$.

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	000000	0000
Homomorphic Encrypt	ion				
BEV					
2					
Schomo doscri	ntion				

Let \mathbf{pk} and \mathbf{evk} be an encryption and a relinearization key, respectively, related to a secret key $\mathbf{sk}.$

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
Homomorphic Encryption					
BFV					

Scheme description

Let \mathbf{pk} and \mathbf{evk} be an encryption and a relinearization key, respectively, related to a secret key $\mathbf{sk}.$

 $\begin{aligned} \mathsf{BFV}.\mathsf{Encrypt}(\mathbf{pk},m): \ \mathsf{Let} \ \mathbf{pk} &= (p_0,p_1), \ \mathsf{sample} \ u \leftarrow R_3, \ \mathsf{and} \ e_0, e_1 \leftarrow \chi. \\ & \mathsf{Output:} \ (\ \lfloor q/t \rfloor \cdot m + u \cdot p_0 + e_0, \ u \cdot p_1 + e_1 \). \end{aligned} \\ \\ \mathsf{BFV}.\mathsf{Decrypt}(\mathsf{sk},\mathsf{ct}): \ \mathsf{Let} \ \mathsf{ct} &= (c_0,c_1). \ \mathsf{Output:} \\ & m = \left[\left\lfloor \frac{t}{q} \left[c_0 + c_1 \cdot \mathsf{sk} \right]_q \right] \right]_t. \end{aligned}$

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	000000	0000
Homomorphic Encryption					
BFV					

Scheme description

Let \mathbf{pk} and \mathbf{evk} be an encryption and a relinearization key, respectively, related to a secret key $\mathbf{sk}.$

 $\begin{aligned} \mathsf{BFV}.\mathsf{Encrypt}(\mathbf{pk},m): \ \mathsf{Let} \ \mathbf{pk} &= (p_0,p_1), \ \mathsf{sample} \ u \leftarrow R_3, \ \mathsf{and} \ e_0, e_1 \leftarrow \chi. \\ & \mathsf{Output:} \ (\ \lfloor q/t \rfloor \cdot m + u \cdot p_0 + e_0, \ u \cdot p_1 + e_1 \). \end{aligned} \\ \\ \mathsf{BFV}.\mathsf{Decrypt}(\mathbf{sk},\mathsf{ct}): \ \mathsf{Let} \ \mathsf{ct} &= (c_0,c_1). \ \mathsf{Output:} \\ & m = \left[\left\lfloor \frac{t}{q} \left[c_0 + c_1 \cdot \mathbf{sk} \right]_q \right] \right]_t. \end{aligned} \\ \\ \\ \mathsf{BFV}.\mathsf{Add}(c_0,c_1): \ \mathsf{Output:} \ (\ c_{0,0} + c_{1,0}, \ c_{0,1} + c_{1,1} \). \end{aligned}$

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	000000	0000
Homomorphic Encry	ption				
BFV					

Scheme description

Let \mathbf{pk} and \mathbf{evk} be an encryption and a relinearization key, respectively, related to a secret key $\mathbf{sk}.$

 $\begin{array}{l} \mathsf{BFV}.\mathsf{Encrypt}(\mathbf{pk},m) \colon \mathsf{Let} \ \mathbf{pk} = (p_0,p_1), \ \mathsf{sample} \ u \leftarrow R_3, \ \mathsf{and} \ e_0, e_1 \leftarrow \chi.\\ & \mathsf{Output} \colon (\ \lfloor q/t \rfloor \cdot m + u \cdot p_0 + e_0, \ u \cdot p_1 + e_1 \). \end{array}$ $\begin{array}{l} \mathsf{BFV}.\mathsf{Decrypt}(\mathbf{sk},\mathsf{ct}) \colon \mathsf{Let} \ \mathsf{ct} = (c_0,c_1). \ \mathsf{Output} \colon \\ & m = \left[\left\lfloor \frac{t}{q} \left[c_0 + c_1 \cdot \mathbf{sk} \right]_q \right] \right]_t.\\ \mathsf{BFV}.\mathsf{Add}(c_0,c_1) \colon \mathsf{Output} \colon (\ c_{0,0} + c_{1,0}, \ c_{0,1} + c_{1,1} \).\\ \mathsf{BFV}.\mathsf{Mul}(c_0,c_1,\mathsf{evk}) \colon \ \mathsf{Compute} \end{array}$

$$\begin{split} c_{0} &= \left[\left\lfloor t/q \cdot c_{0,0} \cdot c_{1,0} \right\rceil \right]_{q}, \\ c_{1} &= \left[\left\lfloor t/q \cdot (c_{0,0} \cdot c_{1,1} + c_{0,1}, \cdot c_{1,0}) \right\rceil \right]_{q} \\ c_{2} &= \left[\left\lfloor t/q \cdot c_{0,1} \cdot c_{1,1} \right\rceil \right]_{q}. \end{split}$$

and return $\mathbf{c}_{mul} = \operatorname{Relin}(c_0, c_1, c_2, \mathbf{evk}).$

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

Parallel computing architecture.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).
- Multiple memory spaces:

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).
- Multiple memory spaces:
 - Global,

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).
- Multiple memory spaces:
 - Global,
 - Shared,

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).
- Multiple memory spaces:
 - Global,
 - Shared,
 - Local,

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
CUDA overview					
CUDA					

- Parallel computing architecture.
- Thread-group oriented (as in a vector processor).
- Multiple memory spaces:
 - Global,
 - Shared,
 - Local,
 - Constant.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	000000	0000
Mathematical background					

Mathematical background

One polynomial with huge coefficients \$ \$ Many polynomials with small coefficients

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000
Mathematical backs	round				

Mathematical background

Let $\{p_0, p_1, \cdots, p_{\ell-1}\}$ be a set of coprimes and $P \in R_q$.

$$P(x) = \sum_{i=0}^{N} a_i \cdot x^i \iff \begin{bmatrix} P(x) \mod p_0, \\ P(x) \mod p_1, \\ P(x) \mod p_2, \\ \dots \\ P(x) \mod p_{\ell-1} \end{bmatrix}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000
Mathematical back	ground				

Mathematical background

RNS natively supports:

- Addition,
- Multiplication,
- Modular reduction by a cyclotomic polynomial.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000
Mathematical back	ground				

- RNS natively supports:
 - Addition,
 - Multiplication,
 - Modular reduction by a cyclotomic polynomial.
- Does not support:

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000
Mathematical back	ground				

- RNS natively supports:
 - Addition,
 - Multiplication,
 - Modular reduction by a cyclotomic polynomial.
- Does not support:
 - Integer modular reduction,

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Mathematical backs	round				

- RNS natively supports:
 - Addition,
 - Multiplication,
 - Modular reduction by a cyclotomic polynomial.
- Does not support:
 - Integer modular reduction,
 - Non-integer divisions,

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Mathematical backs	round				

- RNS natively supports:
 - Addition,
 - Multiplication,
 - Modular reduction by a cyclotomic polynomial.
- Does not support:
 - Integer modular reduction,
 - Non-integer divisions,
 - Roundings.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	000000	0000
Mathematical back	ground				

Mathematical background

- RNS natively supports:
 - Addition,
 - Multiplication,
 - Modular reduction by a cyclotomic polynomial.
- Does not support:
 - Integer modular reduction,
 - Non-integer divisions,
 - Roundings.

Halevi et al.'s BFV variant can handle that.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	● 000 00	00	000000	0000

Polynomial multiplication in R_q

- Not a trivial operation.
- Computational complexity can reach $\Theta(N^2)$.
- Widely used by RLWE-based cryptosystems.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

Mathematical background

• DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

- DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.
- Variants with log-linear complexity.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

- DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.
- Variants with **log-linear** complexity.
- Let ω_N be a primitive *N*-th root of unity.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	00000	00	0000000	0000

Mathematical background

- DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.
- Variants with **log-linear** complexity.
- Let ω_N be a primitive *N*-th root of unity.

1 Fast Fourier Transform (**FFT**): $\omega_N \in \mathbb{C}$.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	00000	00	0000000	0000

Mathematical background

- DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.
- Variants with **log-linear** complexity.
- Let ω_N be a primitive *N*-th root of unity.

1 Fast Fourier Transform (**FFT**): $\omega_N \in \mathbb{C}$.

2 Number-Theoretic Transform (NTT): $\omega_N \in GF(p)$.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

Mathematical background

- DFT-based transforms reduce the computational complexity to $\Theta(N)$ in the transform domain.
- Variants with **log-linear** complexity.
- Let ω_N be a primitive *N*-th root of unity.

1 Fast Fourier Transform (**FFT**): $\omega_N \in \mathbb{C}$.

2 Number-Theoretic Transform (**NTT**): $\omega_N \in GF(p)$.

3 Discrete Galois Transform (**DGT**): $\omega_N \in GF(p^2)$.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000

• $u \in GF(p^2)$ can be **represented as** $u_{re} + i \cdot u_{im}$, where $u_{re}, u_{im} \in GF(p)$ and $i = \sqrt{-1}$, also known as **Gaussian Integers**.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

u ∈ *GF*(*p*²) can be **represented as** *u_{re}* + *i* · *u_{im}*, where *u_{re}*, *u_{im}* ∈ *GF*(*p*) and *i* = √−1, also known as **Gaussian Integers**.
There are some convenient properties:

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	00000	00	000000	0000

- $u \in GF(p^2)$ can be **represented as** $u_{re} + i \cdot u_{im}$, where $u_{re}, u_{im} \in GF(p)$ and $i = \sqrt{-1}$, also known as **Gaussian Integers**.
- There are some convenient properties:
 - Negacyclic convolution,

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000

- $u \in GF(p^2)$ can be **represented as** $u_{re} + i \cdot u_{im}$, where $u_{re}, u_{im} \in GF(p)$ and $i = \sqrt{-1}$, also known as **Gaussian Integers**.
- There are some convenient properties:
 - Negacyclic convolution,
 - Polynomial folding.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

• Loop dependency forces the use of a single Thread Block to assert synchronization.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

- Loop dependency forces the use of a single Thread Block to assert synchronization.
- A Thread Block is limited to 1024 CUDA-Threads.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

- Loop dependency forces the use of a single Thread Block to assert synchronization.
- A Thread Block is limited to 1024 CUDA-Threads.
 - It can also be achieved by successive CUDA-Kernel calls, at the cost of a considerable overhead.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

- Loop dependency forces the use of a single Thread Block to assert synchronization.
- A Thread Block is limited to 1024 CUDA-Threads.
 - It can also be achieved by successive CUDA-Kernel calls, at the cost of a considerable overhead.

• We propose a formulation named **hierarchical DGT** (HDGT).

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

- Loop dependency forces the use of a single Thread Block to assert synchronization.
- A Thread Block is limited to 1024 CUDA-Threads.
 - It can also be achieved by successive CUDA-Kernel calls, at the cost of a considerable overhead.
- We propose a formulation named hierarchical DGT (HDGT).
 - Targets constrained devices.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
HDGT					

Discrete Galois Transform

- Loop dependency forces the use of a single Thread Block to assert synchronization.
- A Thread Block is limited to 1024 CUDA-Threads.
 - It can also be achieved by successive CUDA-Kernel calls, at the cost of a considerable overhead.
- We propose a formulation named **hierarchical DGT** (HDGT).
 - Targets constrained devices.
 - Originally proposed for the FFT by Bailey:1990 and Govindaraju:2008.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

Description

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

1 Vector representation.

$\left[\begin{array}{ccc}a_0 & a_1 & \ldots & a_{2N-1}\end{array}\right]$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- **2** Folding.

$$\left[\begin{array}{cc} (a_0+ia_N) & \dots & (a_{N-1}+ia_{2N-1}) \end{array}\right]$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

Description

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- **2** Folding.

$\begin{bmatrix} \widetilde{a}_0 & \widetilde{a}_1 & \dots & \widetilde{a}_{N-1} \end{bmatrix}$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

Description

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- 2 Folding.
- 3 Twisting Mult. by powers of a primitive N-th root of i mod p.

 $\begin{bmatrix} (\tilde{a}_0 \cdot h^0) & (\tilde{a}_1 \cdot h^1) & \dots \end{bmatrix}$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

Description

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- 2 Folding.
- 3 Twisting Mult. by powers of a primitive N-th root of i mod p.

 $\begin{bmatrix} \tilde{b}_0 & \tilde{b}_1 & \dots & \tilde{b}_{N-1} \end{bmatrix}$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- 2 Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- **2** Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation (n_r, n_c) .
- 5 Apply the canonical DGT through the columns.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- 2 Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.

 $\begin{bmatrix} B_0 & \tilde{b}_1 & \dots & \tilde{b}_{n_c-1} \\ B_{n_c} & \tilde{b}_{n_c+1} & \dots & \tilde{b}_{2n_c-1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- 2 Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.

$$\begin{bmatrix} B_0 & B_1 & \dots & \tilde{b}_{n_c-1} \\ B_{n_c} & B_{n_c+1} & \dots & \tilde{b}_{2n_c-1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- 2 Folding.
- 3 Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.

6 Multiply
$$B_{j,k}$$
 by
 $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j) \cdot k}$.

$$\begin{bmatrix} B_0 g_{0,0} & \dots & B_{n_c-1} g_{0,n_c-1} \\ B_{n_c} g_{1,0} & \dots & B_{2n_c-1} g_{1,n_c-1} \\ \vdots & \vdots & \vdots \end{bmatrix}$$
	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- **1** Vector representation.
- **2** Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.

6 Multiply
$$B_{j,k}$$
 by
 $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j) \cdot k}$.

$$\begin{bmatrix} C_0 & C_1 & \dots & C_{n_c-1} \\ C_{n_c} & C_{n_c+1} & \dots & C_{2n_c-1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- **2** Folding.
- 3 Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.
- 6 Multiply $B_{j,k}$ by $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j)\cdot k}$.
- Apply the canonical DGT through the rows.

$$\begin{bmatrix} C_0 & C_1 & \dots & C_{n_c-1} \\ C_{n_c} & C_{n_c+1} & \dots & C_{2n_c-1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- **2** Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.
- 6 Multiply $B_{j,k}$ by $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j)\cdot k}$.
- Apply the canonical DGT through the rows.

$\begin{bmatrix} A_0 \end{bmatrix}$	A_1		A_{n_c-1}
C_{n_c}	C_{n_c+1}	• • •	C_{2n_c-1}
:	:	:	:
Ŀ·	•	•	

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- **2** Folding.
- 3 Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.
- 6 Multiply $B_{j,k}$ by $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j)\cdot k}$.
- Apply the canonical DGT through the rows.

$$\begin{bmatrix} A_0 & A_1 & \dots & A_{n_c-1} \\ A_{n_c} & A_{n_c+1} & \dots & A_{2n_c-1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	00000	00	0000000	0000
HDGT					

$$p(x) = a_0 + a_1 x + \dots + a_{2N-1} x^{2N-1}$$

- 1 Vector representation.
- 2 Folding.
- Twisting Mult. by powers of a primitive N-th root of i mod p.
- 4 Matrix representation $-(n_r, n_c)$.
- 5 Apply the canonical DGT through the columns.
- 6 Multiply $B_{j,k}$ by $g_{j,k} = \omega_{N/2}^{\text{bit-reversal}(j)\cdot k}$.
- Apply the canonical DGT through the rows.

$$\begin{aligned} \mathsf{HDGT}(p(x)) &= A_0 + \cdots + A_{N-1} x^{N-1}, \\ \text{s.t. } A_i &\in GF(p^2). \end{aligned}$$

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	•0	0000000	0000

SPOG - Secure Processing On GPGPUs

- Proof-of-concept implementation written in C++.
- Targets CUDA.
- Applies HDGT for polynomial multiplication.
- Modular implementation, separating polynomial arithmetic and cryptosystem.
 - CUPOLY,
 - HPS-BFV.
- cuRAND is used for sampling.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000

Data locality SPOG - Secure Processing On GPGPUs

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	000000	0000
Methodology					

Comparison with other works

Methodology

SPOG is compared with two other works in the literature. Since none of them release the source codes, we replicate the processing environment.

- BPAVR Badawi, Polyakov, Aung, Veeravalli, and Rohlof
 - Tesla V100,
 - but presents latency for decryption and homomorphic multiplication only.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	• o ooooo	0000
Methodology					

Comparison with other works

Methodology

SPOG is compared with two other works in the literature. Since none of them release the source codes, we replicate the processing environment.

- BPAVR Badawi, Polyakov, Aung, Veeravalli, and Rohlof
 - Tesla V100,
 - but presents latency for decryption and homomorphic multiplication only.
- BVMA Badawi, Veeravalli, Mun, and Aung,
 - Tesla K80,
 - Much more complete latency description.

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
Methodology					
Darama	torc				
гагаше	lers				
Methodology	/				

Two different setups are considered for Google Cloud VMs running NVIDIA Tesla K80 and V100, referred to as *gc.k80* and *gc.v100*.

log N	gc.k80	gc.v100
11	62	60
12	186	60
13	372	120
14	744	360
15	744	600

Table: Lower bound for the size of q in bits.

In both cases, t = 256.

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
Comparison					

SPOG vs BVMA

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000
Comparison					

SPOG vs BPAVR

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
Comparison					
HDGT					

We compare HDGT with two implementations of its canonical formulation:

DGT-I Multi-kernel design

Synchronization forced through $\log \frac{N}{2}$ CUDA-Kernel calls.

DGT-II Single-kernel design

- Synchronization limited to **block level**.
- Supports up to 2048-degree polynomials.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000
Comparison					
UDCT.					
HDGI	VS DGT-I				

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	000000	0000
Comparison					

HDGT vs DGT-II – Tesla K80

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	000000	0000
Comparison					

HDGT vs DGT-II – Tesla V100

Introduction	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	0000000	000000	00	0000000	0000

Conclusion

Future work:

- Direct comparison between HDGT, NTT, and HNTT on GPUs.
- SPOG-CKKS.
- Benchmarks of complex applications running over SPOG-BFV and SPOG-CKKS.

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	0000000	000000	00	0000000	0000

Acknowledgements

- CNPq,
- CAPES,
- LG,
- Google.

	Building blocks	Polynomial multiplication	SPOG	Results	Conclusion
000000	000000	000000	00	0000000	0000

Acknowledgements

- CNPq,
- CAPES,
- LG,
- Google.

Thank you!

	Building blocks	Polynomial multiplication	SPOG		Conclusion
000000	000000	000000	00	0000000	0000

Faster Homomorphic Encryption over GPGPUs via hierarchical DGT

Pedro G. M. R. Alves¹ Jheyne N. Ortiz¹ Diego F. Aranha² pedro.alves@ic.unicamp.br

> ¹Institute of Computing, University of Campinas ²Department of Computer Science, Aarhus University

> > March 4, 2021

Financial Cryptography and Data Security 2021

Pedro G. M. R. Alves

31 / 31

Introduction 000000	Building blocks	Polynomial multiplication	SPOG OO	Results 0000000	Conclusion
Referen	ices I				