
Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Faster Homomorphic Encryption over GPGPUs
via hierarchical DGT

Pedro G. M. R. Alves1 Jheyne N. Ortiz1 Diego F. Aranha2
pedro.alves@ic.unicamp.br

1Institute of Computing, University of Campinas
2Department of Computer Science, Aarhus University

March 4, 2021

Financial Cryptography and Data Security 2021

Pedro G. M. R. Alves University of Campinas March 2021 1 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.

Always a bad thing?

Security,
E-Health,
Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,
Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,

E-Health,
Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,

Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,
Leisure activities,

Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,
Leisure activities,
Traffic,

. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,
Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction

Ubiquitous data gathering is here to stay.
Always a bad thing?

Security,
E-Health,
Leisure activities,
Traffic,
. . .

“Data privacy is a hard problem”

— Narayanan and Felten, 2014

Pedro G. M. R. Alves University of Campinas March 2021 2 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

Pedro G. M. R. Alves University of Campinas March 2021 3 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

Pedro G. M. R. Alves University of Campinas March 2021 4 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

Pedro G. M. R. Alves University of Campinas March 2021 5 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

FHE allows evaluation for addition and multiplication without the
need to decrypt.

Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/
BFV is currently one of the primary schemes.

Performance is still a challenge.

Pedro G. M. R. Alves University of Campinas March 2021 6 / 31

homomorphicencryption.org/

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

FHE allows evaluation for addition and multiplication without the
need to decrypt.
Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/
BFV is currently one of the primary schemes.

Performance is still a challenge.

Pedro G. M. R. Alves University of Campinas March 2021 6 / 31

homomorphicencryption.org/

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

FHE allows evaluation for addition and multiplication without the
need to decrypt.
Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/

BFV is currently one of the primary schemes.

Performance is still a challenge.

Pedro G. M. R. Alves University of Campinas March 2021 6 / 31

homomorphicencryption.org/

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

FHE allows evaluation for addition and multiplication without the
need to decrypt.
Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/
BFV is currently one of the primary schemes.

Performance is still a challenge.

Pedro G. M. R. Alves University of Campinas March 2021 6 / 31

homomorphicencryption.org/

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Introduction
Homomorphic Encryption

FHE allows evaluation for addition and multiplication without the
need to decrypt.
Standardization efforts are on the way.

There is an open consortium – homomorphicencryption.org/
BFV is currently one of the primary schemes.

Performance is still a challenge.

Pedro G. M. R. Alves University of Campinas March 2021 6 / 31

homomorphicencryption.org/

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.
A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.

A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Our contributions

We propose implementation techniques for performance
enhancement of RLWE-based schemes on GPUs.

Polynomial multiplication is a costly operation. DGT can help with
that.

A divide-and-conquer formulation for the Discrete Galois Transform
(HDGT).

A state machine is described to improve locality.
A proof-of-concept implementation is compared with state-of-the-art
works.

Pedro G. M. R. Alves University of Campinas March 2021 7 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

Homomorphic Encryption
Definition

Homomorphic Encryption (HE)
Let

E and D be a pair of encryption and decryption functions,
m1 and m2 be plaintexts.

The pair (E , D) forms an homomorphic encryption scheme for some
operator � if and only if the following holds:

D (E (m1) ◦ E (m2)) ≡ D (E (m1 � m2)) .

For example, in Paillier’s proposal, ◦ = multiplication and � = addition.

Pedro G. M. R. Alves University of Campinas March 2021 8 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

Homomorphic Encryption
Definition

Homomorphic Encryption (HE)
Let

E and D be a pair of encryption and decryption functions,
m1 and m2 be plaintexts.

The pair (E , D) forms an homomorphic encryption scheme for some
operator � if and only if the following holds:

D (E (m1) ◦ E (m2)) ≡ D (E (m1 � m2)) .

For example, in Paillier’s proposal, ◦ = multiplication and � = addition.

Pedro G. M. R. Alves University of Campinas March 2021 8 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

RLWE-based,

Post-quantum secure,
Basic arithmetic built upon polynomial rings of the form
Rp = Zp[X]/(XN + 1),
A security parameter λ, a plaintext domain defined as Rt ,
a ciphertext domain defined as Rq, for q � t.

Pedro G. M. R. Alves University of Campinas March 2021 9 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

RLWE-based,
Post-quantum secure,

Basic arithmetic built upon polynomial rings of the form
Rp = Zp[X]/(XN + 1),
A security parameter λ, a plaintext domain defined as Rt ,
a ciphertext domain defined as Rq, for q � t.

Pedro G. M. R. Alves University of Campinas March 2021 9 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

RLWE-based,
Post-quantum secure,
Basic arithmetic built upon polynomial rings of the form
Rp = Zp[X]/(XN + 1),

A security parameter λ, a plaintext domain defined as Rt ,
a ciphertext domain defined as Rq, for q � t.

Pedro G. M. R. Alves University of Campinas March 2021 9 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

RLWE-based,
Post-quantum secure,
Basic arithmetic built upon polynomial rings of the form
Rp = Zp[X]/(XN + 1),
A security parameter λ, a plaintext domain defined as Rt ,
a ciphertext domain defined as Rq, for q � t.

Pedro G. M. R. Alves University of Campinas March 2021 9 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

Let pk and evk be an encryption and a relinearization key, respectively,
related to a secret key sk.

BFV.Encrypt(pk,m): Let pk = (p0, p1), sample u ← R3, and e0, e1 ← χ.
Output: (bq/tc ·m + u · p0 + e0, u · p1 + e1).

BFV.Decrypt(sk, ct): Let ct = (c0, c1). Output:
m =

[⌊
t
q [c0 + c1 · sk]q

⌉]
t
.

BFV.Add(c0, c1): Output: (c0,0 + c1,0, c0,1 + c1,1).
BFV.Mul(c0, c1, evk): Compute

c0 = [bt/q · c0,0 · c1,0e]q ,
c1 = [bt/q · (c0,0 · c1,1 + c0,1, ·c1,0)e]q
c2 = [bt/q · c0,1 · c1,1e]q .

and return cmul = Relin(c0, c1, c2, evk).

Pedro G. M. R. Alves University of Campinas March 2021 10 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

Let pk and evk be an encryption and a relinearization key, respectively,
related to a secret key sk.
BFV.Encrypt(pk,m): Let pk = (p0, p1), sample u ← R3, and e0, e1 ← χ.

Output: (bq/tc ·m + u · p0 + e0, u · p1 + e1).
BFV.Decrypt(sk, ct): Let ct = (c0, c1). Output:

m =
[⌊

t
q [c0 + c1 · sk]q

⌉]
t
.

BFV.Add(c0, c1): Output: (c0,0 + c1,0, c0,1 + c1,1).
BFV.Mul(c0, c1, evk): Compute

c0 = [bt/q · c0,0 · c1,0e]q ,
c1 = [bt/q · (c0,0 · c1,1 + c0,1, ·c1,0)e]q
c2 = [bt/q · c0,1 · c1,1e]q .

and return cmul = Relin(c0, c1, c2, evk).

Pedro G. M. R. Alves University of Campinas March 2021 10 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

Let pk and evk be an encryption and a relinearization key, respectively,
related to a secret key sk.
BFV.Encrypt(pk,m): Let pk = (p0, p1), sample u ← R3, and e0, e1 ← χ.

Output: (bq/tc ·m + u · p0 + e0, u · p1 + e1).
BFV.Decrypt(sk, ct): Let ct = (c0, c1). Output:

m =
[⌊

t
q [c0 + c1 · sk]q

⌉]
t
.

BFV.Add(c0, c1): Output: (c0,0 + c1,0, c0,1 + c1,1).

BFV.Mul(c0, c1, evk): Compute

c0 = [bt/q · c0,0 · c1,0e]q ,
c1 = [bt/q · (c0,0 · c1,1 + c0,1, ·c1,0)e]q
c2 = [bt/q · c0,1 · c1,1e]q .

and return cmul = Relin(c0, c1, c2, evk).

Pedro G. M. R. Alves University of Campinas March 2021 10 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Homomorphic Encryption

BFV
Scheme description

Let pk and evk be an encryption and a relinearization key, respectively,
related to a secret key sk.
BFV.Encrypt(pk,m): Let pk = (p0, p1), sample u ← R3, and e0, e1 ← χ.

Output: (bq/tc ·m + u · p0 + e0, u · p1 + e1).
BFV.Decrypt(sk, ct): Let ct = (c0, c1). Output:

m =
[⌊

t
q [c0 + c1 · sk]q

⌉]
t
.

BFV.Add(c0, c1): Output: (c0,0 + c1,0, c0,1 + c1,1).
BFV.Mul(c0, c1, evk): Compute

c0 = [bt/q · c0,0 · c1,0e]q ,
c1 = [bt/q · (c0,0 · c1,1 + c0,1, ·c1,0)e]q
c2 = [bt/q · c0,1 · c1,1e]q .

and return cmul = Relin(c0, c1, c2, evk).
Pedro G. M. R. Alves University of Campinas March 2021 10 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.

Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,
Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).

Multiple memory spaces:

Global,
Shared,
Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,
Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,

Shared,
Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,

Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,
Local,

Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

CUDA overview

CUDA

Parallel computing architecture.
Thread-group oriented (as in a
vector processor).
Multiple memory spaces:

Global,
Shared,
Local,
Constant.

Pedro G. M. R. Alves University of Campinas March 2021 11 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

One polynomial with huge coefficients
m

Many polynomials with small coefficients

Pedro G. M. R. Alves University of Campinas March 2021 12 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

Let {p0, p1, · · · , p`−1} be a set of coprimes and P ∈ Rq.

P(x) =
N∑

i=0
ai · x i ⇐⇒


P(x) mod p0,
P(x) mod p1,
P(x) mod p2,

. . .
P(x) mod p`−1



Pedro G. M. R. Alves University of Campinas March 2021 13 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:

Integer modular reduction,
Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:

Integer modular reduction,
Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:
Integer modular reduction,

Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:
Integer modular reduction,
Non-integer divisions,

Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:
Integer modular reduction,
Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Mathematical background

Residue Number System – RNS
Mathematical background

RNS natively supports:
Addition,
Multiplication,
Modular reduction by a cyclotomic polynomial.

Does not support:
Integer modular reduction,
Non-integer divisions,
Roundings.

Halevi et al.’s BFV variant can handle that.

Pedro G. M. R. Alves University of Campinas March 2021 14 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Polynomial multiplication in Rq

Not a trivial operation.
Computational complexity can reach Θ(N2).
Widely used by RLWE-based cryptosystems.

Pedro G. M. R. Alves University of Campinas March 2021 15 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.

Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.

Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Fourier Transform – DFT
Mathematical background

DFT-based transforms reduce the computational complexity to
Θ(N) in the transform domain.
Variants with log-linear complexity.
Let ωN be a primitive N-th root of unity.

1 Fast Fourier Transform (FFT): ωN ∈ C.

2 Number-Theoretic Transform (NTT): ωN ∈ GF (p).

3 Discrete Galois Transform (DGT): ωN ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 16 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Galois Transform

u ∈ GF (p2) can be represented as ure + i · uim, where
ure , uim ∈ GF (p) and i =

√
−1, also known as Gaussian Integers.

There are some convenient properties:

Negacyclic convolution,
Polynomial folding.

Pedro G. M. R. Alves University of Campinas March 2021 17 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Galois Transform

u ∈ GF (p2) can be represented as ure + i · uim, where
ure , uim ∈ GF (p) and i =

√
−1, also known as Gaussian Integers.

There are some convenient properties:

Negacyclic convolution,
Polynomial folding.

Pedro G. M. R. Alves University of Campinas March 2021 17 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Galois Transform

u ∈ GF (p2) can be represented as ure + i · uim, where
ure , uim ∈ GF (p) and i =

√
−1, also known as Gaussian Integers.

There are some convenient properties:
Negacyclic convolution,

Polynomial folding.

Pedro G. M. R. Alves University of Campinas March 2021 17 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Discrete Galois Transform

u ∈ GF (p2) can be represented as ure + i · uim, where
ure , uim ∈ GF (p) and i =

√
−1, also known as Gaussian Integers.

There are some convenient properties:
Negacyclic convolution,
Polynomial folding.

Pedro G. M. R. Alves University of Campinas March 2021 17 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.

A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).

Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.
A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).

Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.
A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).

Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.
A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).

Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.
A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).
Targets constrained devices.

Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Polynomial multiplication
Discrete Galois Transform

Loop dependency forces the use of a single Thread Block to assert
synchronization.
A Thread Block is limited to 1024 CUDA-Threads.

It can also be achieved by successive CUDA-Kernel calls, at the cost
of a considerable overhead.

We propose a formulation named hierarchical DGT (HDGT).
Targets constrained devices.
Originally proposed for the FFT by Bailey:1990 and
Govindaraju:2008.

Pedro G. M. R. Alves University of Campinas March 2021 18 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.

2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
a0 a1 . . . a2N−1

]

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.

3 Twisting – Mult. by powers of a
primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
(a0 + iaN) . . . (aN−1 + ia2N−1)

]

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.

3 Twisting – Mult. by powers of a
primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
ã0 ã1 . . . ãN−1

]

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
(ã0 · h0) (ã1 · h1) . . .

]

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.

4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

[
b̃0 b̃1 . . . b̃N−1

]

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).

5 Apply the canonical DGT
through the columns.

6 Multiply Bj,k by
gj,k = ω

bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 b̃0 b̃1 . . . b̃nc −1
b̃nc b̃nc +1 . . . b̃2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.

6 Multiply Bj,k by
gj,k = ω

bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 b̃0 b̃1 . . . b̃nc −1
b̃nc b̃nc +1 . . . b̃2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.

6 Multiply Bj,k by
gj,k = ω

bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 B0 b̃1 . . . b̃nc −1
Bnc b̃nc +1 . . . b̃2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.

6 Multiply Bj,k by
gj,k = ω

bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 B0 B1 . . . b̃nc −1
Bnc Bnc +1 . . . b̃2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 B0g0,0 . . . Bnc −1g0,nc −1
Bnc g1,0 . . . B2nc −1g1,nc −1

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 C0 C1 . . . Cnc −1
Cnc Cnc +1 . . . C2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 C0 C1 . . . Cnc −1
Cnc Cnc +1 . . . C2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 A0 A1 . . . Anc −1
Cnc Cnc +1 . . . C2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

 A0 A1 . . . Anc −1
Anc Anc +1 . . . A2nc −1
...

...
...

...



Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

HDGT

Hierarchical Discrete Galois Transform
Description

p(x) = a0 + a1x + · · ·+ a2N−1x2N−1.

1 Vector representation.
2 Folding.
3 Twisting – Mult. by powers of a

primitive N-th root of i mod p.
4 Matrix representation – (nr , nc).
5 Apply the canonical DGT

through the columns.
6 Multiply Bj,k by

gj,k = ω
bit-reversal(j)·k
N/2 .

7 Apply the canonical DGT
through the rows.

HDGT(p(x)) = A0+· · ·+AN−1xN−1,

s.t. Ai ∈ GF (p2).

Pedro G. M. R. Alves University of Campinas March 2021 19 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

spog - Secure Processing On GPGPUs

Proof-of-concept implementation written in C++.
Targets CUDA.
Applies HDGT for polynomial multiplication.
Modular implementation, separating polynomial arithmetic and
cryptosystem.

cuPoly,
HPS-BFV.

cuRAND is used for sampling.

Pedro G. M. R. Alves University of Campinas March 2021 20 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Data locality
spog - Secure Processing On GPGPUs

Pedro G. M. R. Alves University of Campinas March 2021 21 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Methodology

Comparison with other works
Methodology

spog is compared with two other works in the literature. Since none of
them release the source codes, we replicate the processing environment.

BPAVR – Badawi, Polyakov, Aung, Veeravalli, and Rohlof
Tesla V100,
but presents latency for decryption and homomorphic multiplication
only.

BVMA – Badawi, Veeravalli, Mun, and Aung,
Tesla K80,
Much more complete latency description.

Pedro G. M. R. Alves University of Campinas March 2021 22 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Methodology

Comparison with other works
Methodology

spog is compared with two other works in the literature. Since none of
them release the source codes, we replicate the processing environment.

BPAVR – Badawi, Polyakov, Aung, Veeravalli, and Rohlof
Tesla V100,
but presents latency for decryption and homomorphic multiplication
only.

BVMA – Badawi, Veeravalli, Mun, and Aung,
Tesla K80,
Much more complete latency description.

Pedro G. M. R. Alves University of Campinas March 2021 22 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Methodology

Parameters
Methodology

Two different setups are considered for Google Cloud VMs running
NVIDIA Tesla K80 and V100, referred to as gc.k80 and gc.v100 .

log N gc.k80 gc.v100
11 62 60
12 186 60
13 372 120
14 744 360
15 744 600

Table: Lower bound for the size of q in bits.

In both cases, t = 256.

Pedro G. M. R. Alves University of Campinas March 2021 23 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

spog vs BVMA
Latencies

0.0

2.0

4.0

6.0

N = 2¹¹ N = 2¹² N = 2¹³ N = 2¹⁴

Encryption Decryption Homomorphic addition Homomorphic multiplication

BVMA/SPOG ratio (gc.k80)

Pedro G. M. R. Alves University of Campinas March 2021 24 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

spog vs BPAVR
Latencies

0.0

1.0

2.0

3.0

N = 2¹² N = 2¹³ N = 2¹⁴ N = 2¹⁵

Decryption Homomorphic multiplication

BPAVR/SPOG ratio (gc.v100)

Pedro G. M. R. Alves University of Campinas March 2021 25 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

HDGT

We compare HDGT with two implementations of its canonical
formulation:

DGT-I Multi-kernel design
Synchronization forced through log N

2 CUDA-Kernel
calls.

DGT-II Single-kernel design
Synchronization limited to block level.
Supports up to 2048-degree polynomials.

Pedro G. M. R. Alves University of Campinas March 2021 26 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

HDGT vs DGT-I
Latencies

0.0

1.0

2.0

3.0

N = 2¹¹ N = 2¹² N = 2¹³ N = 2¹⁴ N = 2¹⁵

Transform Encryption Homomorphic multiplication

DGT-I/HDGT ratio - gc.v100

Pedro G. M. R. Alves University of Campinas March 2021 27 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

HDGT vs DGT-II – Tesla K80
Latencies

0.0

0.5

1.0

1.5

N = 2¹¹ N = 2¹²

Transform Encryption Homomorphic multiplication

DGT-II/HDGT ratio - gc.k80

Pedro G. M. R. Alves University of Campinas March 2021 28 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Comparison

HDGT vs DGT-II – Tesla V100
Latencies

0.0

0.5

1.0

1.5

2.0

2.5

N = 2¹¹ N = 2¹²

Transform Encryption Homomorphic multiplication

DGT-II/HDGT ratio - gc.v100

Pedro G. M. R. Alves University of Campinas March 2021 29 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Conclusion

Future work:
Direct comparison between HDGT, NTT, and HNTT on GPUs.
spog-CKKS.
Benchmarks of complex applications running over spog-BFV and
spog-CKKS.

Pedro G. M. R. Alves University of Campinas March 2021 30 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Acknowledgements

− CNPq,
− CAPES,
− LG,
− Google.

Thank you!

Pedro G. M. R. Alves University of Campinas March 2021 31 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Acknowledgements

− CNPq,
− CAPES,
− LG,
− Google.

Thank you!

Pedro G. M. R. Alves University of Campinas March 2021 31 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

Faster Homomorphic Encryption over GPGPUs
via hierarchical DGT

Pedro G. M. R. Alves1 Jheyne N. Ortiz1 Diego F. Aranha2
pedro.alves@ic.unicamp.br

1Institute of Computing, University of Campinas
2Department of Computer Science, Aarhus University

March 4, 2021

Financial Cryptography and Data Security 2021

Pedro G. M. R. Alves University of Campinas March 2021 31 / 31

Introduction Building blocks Polynomial multiplication SPOG Results Conclusion

References I

Pedro G. M. R. Alves University of Campinas March 2021 31 / 31

