
FFT for Dummies

Pedro G. M. R. Alves

Senior GPU Engineer @ Zama1

Aug 2025

1The views expressed in this presentation are my own and do not necessarily reflect those of my
employer.



Introduction Building blocks Polynomial multiplication and the DFT

Motivation

(Large degree) Polynomial multiplication is an important operation,

a naive approach can be O(n2),

in the Fourier domain, its cost is linear,

using the FFT, the total cost goes down to O(n log n).



Introduction Building blocks Polynomial multiplication and the DFT

Polynomials

What’s a polynomial?

p(x) = x2 + 7x + 2

is a 2-degree polynomial.
Let b = {2, 7, 1}. Then

p(x) =
2∑

i=0

bix
i .



Introduction Building blocks Polynomial multiplication and the DFT

Polynomials

What’s a polynomial?
p(x) = x2 + 7x + 2

is a 2-degree polynomial.

Let b = {2, 7, 1}. Then

p(x) =
2∑

i=0

bix
i .



Introduction Building blocks Polynomial multiplication and the DFT

Polynomials

What’s a polynomial?
p(x) = x2 + 7x + 2

is a 2-degree polynomial.
Let b = {2, 7, 1}. Then

p(x) =
2∑

i=0

bix
i .



Introduction Building blocks Polynomial multiplication and the DFT

Polynomials

p(x) =
N∑
i=0

bix
i .

is an N-degree polynomial.



Introduction Building blocks Polynomial multiplication and the DFT

Irreducible Polynomials

Definition

Let F be a finite field and R a ring of polynomials with coefficients in F . A polynomial
P ∈ R is said to be irreducible over F if there do not exist polynomials A,B ∈ R such
that:

P = A · B

That is, P cannot be factored as the product of two nontrivial polynomials in R.

You may think on irreducible polynomials are “polynomial primes”.



Introduction Building blocks Polynomial multiplication and the DFT

Cyclotomic Polynomials

Definition

Let P be an irreducible polynomial over a field F . P is the nth cyclotomic polynomial
if it divides X n − 1 and does not divide X k − 1 for any k < n, with k, n ∈ Z.

Special case: If n is a power of 2, the nth cyclotomic polynomial is given by:

Φn(X ) = X n/2 + 1



Introduction Building blocks Polynomial multiplication and the DFT

Complex Numbers

i2 = −1

A complex number is written as:

z = a+ ib with a, b ∈ R

a: real part

b: imaginary part

(a, b) is what matters



Introduction Building blocks Polynomial multiplication and the DFT

Complex Numbers

i2 = −1

A complex number is written as:

z = a+ ib with a, b ∈ R

a: real part

b: imaginary part

(a, b) is what matters



Introduction Building blocks Polynomial multiplication and the DFT

Complex Numbers

i2 = −1

A complex number is written as:

z = a+ ib with a, b ∈ R

a: real part

b: imaginary part

(a, b) is what matters



Introduction Building blocks Polynomial multiplication and the DFT

Complex Numbers

z = a+ ib with a, b ∈ R, i2 = −1

Addition:
(a+ ib) + (c + id) = (a+ c) + i(b + d)

Multiplication:
(a+ ib)(c + id) = (ac − bd) + i(ad + bc)



Introduction Building blocks Polynomial multiplication and the DFT

Associative Operations

Changing the grouping of operands does not change the result.

(a ◦ b) ◦ c = a ◦ (b ◦ c)

Example (Addition):
(2 + 3) + 4 = 2 + (3 + 4) = 9

Example (Multiplication):

(2 · 3) · 4 = 2 · (3 · 4) = 24



Introduction Building blocks Polynomial multiplication and the DFT

Commutative Operations

Changing the order of operands does not change the result.

a ◦ b = b ◦ a

Example (Addition):
2 + 3 = 3 + 2 = 5

Example (Multiplication):
2 · 4 = 4 · 2 = 8



Introduction Building blocks Polynomial multiplication and the DFT

Neutral Elements

Definition

An element O is a neutral element (also called identity) for an operation ◦ on a set S
if:

∀a ∈ S , a ◦O = a

Examples:

Addition (+) on integers:

a+ 0 = a ⇒ Neutral: 0

Multiplication (·) on real numbers:

a · 1 = a ⇒ Neutral: 1

Note: A set may have different neutral elements for different operations.



Introduction Building blocks Polynomial multiplication and the DFT

Inverse Elements

Definition

Given an operation ◦ on a set S , an element I ∈ S is called the inverse of a ∈ S if:

a ◦ I = O

Examples:

Addition on integers:

a+ (−a) = 0 ⇒ Inverse of a is − a

Multiplication on nonzero real numbers:

a · 1
a
= 1 ⇒ Inverse of a is

1

a

Note: A set where every element has an inverse (under some operation) forms a
group.



Introduction Building blocks Polynomial multiplication and the DFT

Algebraic structures

Group:
A set with one operation (e.g., addition or multiplication) that is:

associative,
has a neutral element,
each element has an inverse.

If the operation is also commutative, the group is called abelian.

Example: Integers with addition

Ring:

A set that is an abelian group under +,

equipped with an associative multiplication ·,
has a multiplicative identity (optional in some definitions),

satisfies distributivity:
a · (b + c) = a · b + a · c

Example: Integers



Introduction Building blocks Polynomial multiplication and the DFT

Algebraic structures

Field:

A set where:

(F ,+) is an abelian group with additive identity O,
(F \ {O},×) is an abelian group with multiplicative identity I

i.e. every non-zero element has a multiplicative inverse.

Multiplication is distributive over addition:

a · (b + c) = a · b + a · c

Examples: Rational numbers Q, real numbers R

Finite Field:

A field with a finite number of elements

Also called a Galois Field, denoted Fp or GF(pk)

Commonly used in cryptography and FFT over finite domains



Introduction Building blocks Polynomial multiplication and the DFT

Primitive Roots Modulo a Prime

Let p be a prime number. A number g ∈ Zp is called a primitive root modulo p if:

{g1, g2, . . . , gp−1} ≡ {1, 2, . . . , p − 1} (mod p)

Example: g = 3 is a primitive root modulo 7 because:

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 (mod 7)



Introduction Building blocks Polynomial multiplication and the DFT

Primitive Roots Modulo a Prime

Let p be a prime number. A number g ∈ Zp is called a primitive root modulo p if:

{g1, g2, . . . , gp−1} ≡ {1, 2, . . . , p − 1} (mod p)

Example: g = 3 is a primitive root modulo 7 because:

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 (mod 7)



Introduction Building blocks Polynomial multiplication and the DFT

Visualizing a Cyclic Subgroup

Example: The multiplicative group F×
7 = {1, 2, 3, 4, 5, 6}

The element 3 ∈ F×
7 is a primitive root, because:

⟨3⟩ = {30, 31, 32, 33, 34, 35} (mod 7) = {1, 3, 2, 6, 4, 5}

1 3 2 6 4 5

The group is cyclic of order 6, generated by 3.



Introduction Building blocks Polynomial multiplication and the DFT

Primitive nth Root of Unity

Let R be a ring (or field).

An element ω ∈ R is called an nth root of unity if:

ω · ω · · · · · ω︸ ︷︷ ︸
n times

= ωn = 1 ∈ R

It is called a primitive nth root of unity if:

ωn = 1, and

ωk ̸= 1 for all 1 ≤ k < n

Remarks:

The powers ω0, ω1, . . . , ωn−1 form a cyclic subgroup of order n.

Such roots exist in many settings: complex numbers, finite fields, modular
arithmetic, etc.



Introduction Building blocks Polynomial multiplication and the DFT

Polynomial Multiplication: The Schoolbook Way

Let two polynomials:

A(x) =
n−1∑
i=0

aix
i , B(x) =

n−1∑
j=0

bjx
j

Their product is:

C (x) = A(x) · B(x) =
2n−2∑
k=0

ckx
k

where each coefficient ck is given by:

ck =
k∑

i=0

aibk−i

Complexity: O(n2)

and that’s bad =(



Introduction Building blocks Polynomial multiplication and the DFT

Polynomial Multiplication: The Schoolbook Way

Let two polynomials:

A(x) =
n−1∑
i=0

aix
i , B(x) =

n−1∑
j=0

bjx
j

Their product is:

C (x) = A(x) · B(x) =
2n−2∑
k=0

ckx
k

where each coefficient ck is given by:

ck =
k∑

i=0

aibk−i

Complexity: O(n2) and that’s bad =(



Introduction Building blocks Polynomial multiplication and the DFT

What is a Transform?

A transform is a mathematical process that converts a signal from one form to
another — usually to reveal some hidden structure.



Introduction Building blocks Polynomial multiplication and the DFT

DFT as a Matrix–Vector Multiplication

Let ω be a primitive nth root of unity. The Discrete Fourier Transform (DFT) of a
vector y = [y0, y1, . . . , yn−1]

T is computed as:


X0

X1
...

Xn−1

 =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 ·


y0
y1
...

yn−1



Each output Xj corresponds to evaluating the polynomial

p(X ) =
n−1∑
k=0

yk · X k

on ωj for j = 0, . . . , n − 1. In the complex numbers, ω = e2πi/n.



Introduction Building blocks Polynomial multiplication and the DFT

DFT as a Matrix–Vector Multiplication

Let ω be a primitive nth root of unity. The Discrete Fourier Transform (DFT) of a
vector y = [y0, y1, . . . , yn−1]

T is computed as:


X0

X1
...

Xn−1

 =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 ·


y0
y1
...

yn−1


Each output Xj corresponds to evaluating the polynomial

p(X ) =
n−1∑
k=0

yk · X k

on ωj for j = 0, . . . , n − 1. In the complex numbers, ω = e2πi/n.



Introduction Building blocks Polynomial multiplication and the DFT

DFT Example: Input [1, 2, 3, 4]T

Let ω = e2πi/4 = i . Given input vector:

x =
[
1, 2, 3, 4

]T
we compute the DFT:

X =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ·


1
2
3
4

 =


10

−2 + 2i
−2

−2− 2i


X0 = 1 + 2 + 3 + 4 = 10

X1 = 1 + 2i − 3− 4i = −2 + 2i

X2 = 1− 2 + 3− 4 = −2

X3 = 1− 2i − 3 + 4i = −2− 2i



Introduction Building blocks Polynomial multiplication and the DFT

Polynomial Multiplication via DFT

A(x) DFT Â

B(x) DFT B̂

⊙ Ĉ IDFT C (x)

DFT / IDFT: complexity O(n2)

Pointwise multiplication: complexity O(n)

Transform → Multiply → Inverse Transform
convolution becomes element-wise.



Introduction Building blocks Polynomial multiplication and the DFT

What is the FFT?

Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete
Fourier Transform (DFT).

DFT complexity: O(n2) FFT complexity: O(n log n)

Key idea:

It recursively breaks the transform into smaller DFTs.

Works best when n is a power of 2.

Why it matters:

Makes the Fourier domain relevant to accelerate polynomial multiplications.



Introduction Building blocks Polynomial multiplication and the DFT

Intuition behind the FFT

FFT uses a divide and conquer strategy.

Given a polynomial:

P(x) =
n−1∑
k=0

akx
k

Split the input:

Even part: Peven(x) = a0 + a2x + a4x
2 + . . .

Odd part: Podd(x) = a1 + a3x + a5x
2 + . . .

Recursive idea:
P(x) = Peven(x

2) + x · Podd(x
2)



Introduction Building blocks Polynomial multiplication and the DFT

FFT Gives Free Reduction Modulo Φn(X )

In many lattice-based crypto and FHE schemes, we work in:

Rq = Zq[X ]/(Φn(X )) with Φn(X ) = X n + 1

Rq is the ring of polynomials modulus Φn(X ) with coefficients in the finite field Zq.

Result:

Polynomial multiplication in Fourier domain is already modulo Φn(X ).

No explicit reduction step is needed — it’s built into the transform.

This makes multiplication in Rq fast and efficient.

This is why FFT is essential in efficient FHE.



Introduction Building blocks Polynomial multiplication and the DFT

Number Theoretic Transform (NTT)

Let q = k · N + 1 be a prime and r a primitive root of q. The NTT is a generalization
of the FFT that works over the finite field Zq.

Same exact algorithm as FFT:

ωN ≡ rk mod q.

NTT domain has the same properties regarding polynomial multiplication as the
Fourier domain.

Key difference:

Operates over Zq instead of C
Requires q ≡ 1 mod 2n so that primitive roots of unity exist in Zq

Pros:

Doesn’t add floating-point errors in integer operations.

May be faster if integer instructions are faster.



Introduction Building blocks Polynomial multiplication and the DFT

Discrete Galois Transform (DGT)

The DGT is another generalization of the FFT that works on the Galois field Zq[i ].

A Galois integer is written as:

z = a+ ib with a, b ∈ Zq

An input N-degree polynomial is folded resulting in an (N/2)-degree input.

Can better fit the hardware if enough bandwidth is available.



Introduction Building blocks Polynomial multiplication and the DFT

FFT x NTT x DGT?

Which one is the best?

It depends.



Introduction Building blocks Polynomial multiplication and the DFT

FFT x NTT x DGT?

Which one is the best?
It depends.



Introduction Building blocks Polynomial multiplication and the DFT



Introduction Building blocks Polynomial multiplication and the DFT

References I

Alves, Pedro Geraldo Morelli Rodrigues (2016). “Computação sobre dados cifrados
em GPGPUs”. Portuguese. M.Sc. Dissertation. Campinas, Brazil: Universidade
Estadual de Campinas (Unicamp).
Bailey, D. H. (1989). “FFTs in external or hierarchical memory”. In:
Supercomputing ’89:Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, pp. 234–242. doi: 10.1145/76263.76288.
Govindaraju, Naga K. et al. (2008). “High performance discrete Fourier transforms
on graphics processors”. In: SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12. doi: 10.1109/SC.2008.5213922.

https://doi.org/10.1145/76263.76288
https://doi.org/10.1109/SC.2008.5213922

	Introduction
	Building blocks
	Polynomials
	Algebraic structures
	Algebraic structures
	Primitive roots

	Polynomial multiplication and the DFT
	Discrete Fourier Transform - DFT
	Fast Fourier Transform
	Others


