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Introduction Building blocks Polynomial multiplication and the DFT

Motivation

(Large degree) Polynomial multiplication is an important operation,

a naive approach can be O(n2),

in the Fourier domain, its cost is linear,

using the FFT, the total cost goes down to O(n log n).
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Polynomials

What’s a polynomial?

p(x) = x2 + 7x + 2

is a 2-degree polynomial.
Let b = {2, 7, 1}. Then

p(x) =
2∑

i=0

bix
i .
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Polynomials

p(x) =
N∑
i=0

bix
i .

is an N-degree polynomial.
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Irreducible Polynomials

Definition

Let F be a finite field and R a ring of polynomials with coefficients in F . A polynomial
P ∈ R is said to be irreducible over F if there do not exist polynomials A,B ∈ R such
that:

P = A · B

That is, P cannot be factored as the product of two nontrivial polynomials in R.

You may think on irreducible polynomials are “polynomial primes”.
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Cyclotomic Polynomials

Definition

Let P be an irreducible polynomial over a field F . P is the nth cyclotomic polynomial
if it divides X n − 1 and does not divide X k − 1 for any k < n, with k, n ∈ Z.

Special case: If n is a power of 2, the nth cyclotomic polynomial is given by:

Φn(X ) = X n/2 + 1
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Complex Numbers

i2 = −1

A complex number is written as:

z = a+ ib with a, b ∈ R

a: real part

b: imaginary part

(a, b) is what matters
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Complex Numbers

z = a+ ib with a, b ∈ R, i2 = −1

Addition:
(a+ ib) + (c + id) = (a+ c) + i(b + d)

Multiplication:
(a+ ib)(c + id) = (ac − bd) + i(ad + bc)
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Associative Operations

Changing the grouping of operands does not change the result.

(a ◦ b) ◦ c = a ◦ (b ◦ c)

Example (Addition):
(2 + 3) + 4 = 2 + (3 + 4) = 9

Example (Multiplication):

(2 · 3) · 4 = 2 · (3 · 4) = 24
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Commutative Operations

Changing the order of operands does not change the result.

a ◦ b = b ◦ a

Example (Addition):
2 + 3 = 3 + 2 = 5

Example (Multiplication):
2 · 4 = 4 · 2 = 8
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Neutral Elements

Definition

An element O is a neutral element (also called identity) for an operation ◦ on a set S
if:

∀a ∈ S , a ◦O = a

Examples:

Addition (+) on integers:

a+ 0 = a ⇒ Neutral: 0

Multiplication (·) on real numbers:

a · 1 = a ⇒ Neutral: 1

Note: A set may have different neutral elements for different operations.
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Inverse Elements

Definition

Given an operation ◦ on a set S , an element I ∈ S is called the inverse of a ∈ S if:

a ◦ I = O

Examples:

Addition on integers:

a+ (−a) = 0 ⇒ Inverse of a is − a

Multiplication on nonzero real numbers:

a · 1
a
= 1 ⇒ Inverse of a is

1

a

Note: A set where every element has an inverse (under some operation) forms a
group.
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Algebraic structures

Group:
A set with one operation (e.g., addition or multiplication) that is:

associative,
has a neutral element,
each element has an inverse.

If the operation is also commutative, the group is called abelian.

Example: Integers with addition

Ring:

A set that is an abelian group under +,

equipped with an associative multiplication ·,
has a multiplicative identity (optional in some definitions),

satisfies distributivity:
a · (b + c) = a · b + a · c

Example: Integers
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Algebraic structures

Field:

A set where:

(F ,+) is an abelian group with additive identity O,
(F \ {O},×) is an abelian group with multiplicative identity I

i.e. every non-zero element has a multiplicative inverse.

Multiplication is distributive over addition:

a · (b + c) = a · b + a · c

Examples: Rational numbers Q, real numbers R

Finite Field:

A field with a finite number of elements

Also called a Galois Field, denoted Fp or GF(pk)

Commonly used in cryptography and FFT over finite domains
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Primitive Roots Modulo a Prime

Let p be a prime number. A number g ∈ Zp is called a primitive root modulo p if:

{g1, g2, . . . , gp−1} ≡ {1, 2, . . . , p − 1} (mod p)

Example: g = 3 is a primitive root modulo 7 because:

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 (mod 7)
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Visualizing a Cyclic Subgroup

Example: The multiplicative group F×
7 = {1, 2, 3, 4, 5, 6}

The element 3 ∈ F×
7 is a primitive root, because:

⟨3⟩ = {30, 31, 32, 33, 34, 35} (mod 7) = {1, 3, 2, 6, 4, 5}

1 3 2 6 4 5

The group is cyclic of order 6, generated by 3.
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Primitive nth Root of Unity

Let R be a ring (or field).

An element ω ∈ R is called an nth root of unity if:

ω · ω · · · · · ω︸ ︷︷ ︸
n times

= ωn = 1 ∈ R

It is called a primitive nth root of unity if:

ωn = 1, and

ωk ̸= 1 for all 1 ≤ k < n

Remarks:

The powers ω0, ω1, . . . , ωn−1 form a cyclic subgroup of order n.

Such roots exist in many settings: complex numbers, finite fields, modular
arithmetic, etc.
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Polynomial Multiplication: The Schoolbook Way

Let two polynomials:

A(x) =
n−1∑
i=0

aix
i , B(x) =

n−1∑
j=0

bjx
j

Their product is:

C (x) = A(x) · B(x) =
2n−2∑
k=0

ckx
k

where each coefficient ck is given by:

ck =
k∑

i=0

aibk−i

Complexity: O(n2)

and that’s bad =(
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What is a Transform?

A transform is a mathematical process that converts a signal from one form to
another — usually to reveal some hidden structure.
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DFT as a Matrix–Vector Multiplication

Let ω be a primitive nth root of unity. The Discrete Fourier Transform (DFT) of a
vector y = [y0, y1, . . . , yn−1]

T is computed as:


X0

X1
...

Xn−1

 =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 ·


y0
y1
...

yn−1



Each output Xj corresponds to evaluating the polynomial

p(X ) =
n−1∑
k=0

yk · X k

on ωj for j = 0, . . . , n − 1. In the complex numbers, ω = e2πi/n.
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DFT Example: Input [1, 2, 3, 4]T

Let ω = e2πi/4 = i . Given input vector:

x =
[
1, 2, 3, 4

]T
we compute the DFT:

X =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ·


1
2
3
4

 =


10

−2 + 2i
−2

−2− 2i


X0 = 1 + 2 + 3 + 4 = 10

X1 = 1 + 2i − 3− 4i = −2 + 2i

X2 = 1− 2 + 3− 4 = −2

X3 = 1− 2i − 3 + 4i = −2− 2i
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Polynomial Multiplication via DFT

A(x) DFT Â

B(x) DFT B̂

⊙ Ĉ IDFT C (x)

DFT / IDFT: complexity O(n2)

Pointwise multiplication: complexity O(n)

Transform → Multiply → Inverse Transform
convolution becomes element-wise.



Introduction Building blocks Polynomial multiplication and the DFT

What is the FFT?

Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete
Fourier Transform (DFT).

DFT complexity: O(n2) FFT complexity: O(n log n)

Key idea:

It recursively breaks the transform into smaller DFTs.

Works best when n is a power of 2.

Why it matters:

Makes the Fourier domain relevant to accelerate polynomial multiplications.
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Intuition behind the FFT

FFT uses a divide and conquer strategy.

Given a polynomial:

P(x) =
n−1∑
k=0

akx
k

Split the input:

Even part: Peven(x) = a0 + a2x + a4x
2 + . . .

Odd part: Podd(x) = a1 + a3x + a5x
2 + . . .

Recursive idea:
P(x) = Peven(x

2) + x · Podd(x
2)
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FFT Gives Free Reduction Modulo Φn(X )

In many lattice-based crypto and FHE schemes, we work in:

Rq = Zq[X ]/(Φn(X )) with Φn(X ) = X n + 1

Rq is the ring of polynomials modulus Φn(X ) with coefficients in the finite field Zq.

Result:

Polynomial multiplication in Fourier domain is already modulo Φn(X ).

No explicit reduction step is needed — it’s built into the transform.

This makes multiplication in Rq fast and efficient.

This is why FFT is essential in efficient FHE.
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Number Theoretic Transform (NTT)

Let q = k · N + 1 be a prime and r a primitive root of q. The NTT is a generalization
of the FFT that works over the finite field Zq.

Same exact algorithm as FFT:

ωN ≡ rk mod q.

NTT domain has the same properties regarding polynomial multiplication as the
Fourier domain.

Key difference:

Operates over Zq instead of C
Requires q ≡ 1 mod 2n so that primitive roots of unity exist in Zq

Pros:

Doesn’t add floating-point errors in integer operations.

May be faster if integer instructions are faster.
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Discrete Galois Transform (DGT)

The DGT is another generalization of the FFT that works on the Galois field Zq[i ].

A Galois integer is written as:

z = a+ ib with a, b ∈ Zq

An input N-degree polynomial is folded resulting in an (N/2)-degree input.

Can better fit the hardware if enough bandwidth is available.
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FFT x NTT x DGT?

Which one is the best?

It depends.
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